All Your Base Are
Belong To Us

(Primer on Lasso & WebAppSec)

Bil Corry

Lasso.Pro

Presented at:
Lasso Developer Conference

September 18-21, 2008
Chicago, lllinois, USA

INTRODUCTION

“How are you gentlemen !! All your base are beldogis. You are on the way to destruction.
You have no chance to survive make your time. &l&lalHa”
- CATS in Zero Wing

Web application security (aka WebAppSec) is onmaliy disciplinesa web developer must master in order to
create secure, competent websites. This papedisduss common vulnerabilities found in web aggilans and
the methods you can use, programming in Lassaeteept them.

MONETIZING YOUR WEBSITE

Before we get to the “how” of WebAppSec, we'retfgsing to cover the “why”; why is your websiteaaget?
The short answer: money.

There is a belief among some that their little pie€the Internet is far too small and humble t@bany interest to
cyber-criminalg And logically, it may be confusing to understdammv your local volunteer soccer league website
could be of any value to cyber-criminals. Redfligy can a site that has no personal informaticstdal, no

financial information to steal, and simply functoto display the results of soccer games genenaitgecame for
cyber-criminals? Mostly likely not even the sit@rer is generating revenue from the site!

There are two forces that have converged that athowetizing any website a reality: automated perietn tools

and diversity of income streams. Automated petietraools have made it so cyber-criminals do rentento
individually and manually crack each website. éast, they leverage automated tools that can ceaskdf
thousands of websités. And thanks to Google, they don't even have twkyaur web application, Google already
has and can be used to target sites that matcHispequirements and vulnerabilitiés.

Once the website has been cracked, they can tleeongsor more strategies for monetizing the ditere are some
of the strategies they employ:

1. Link spam — you'll often see this in guest boakd blog comments; link spam generates revenue by
enticing your site users to visit the attackeits @vhich sells products, has advertising, instaiédware,
etc). An interview with one such link spammer glad he made over £100,000 per mohtAhd the links
also raise the relative value of the attacker'ssitelin the eyes of the search engines, givinghigher
rank when doing searchés.

2. Hosting — free, anonymous hosting; cyber-crinsre@n use a cracked server to host their own chnten
including warez, malware, phishing sites, piratedtent, eté.

1 Top 10 Concepts That Every Software Engineer $hkinbw
http://www.readwriteweb.com/archives/top_10_conseipiat_every_software_engineer_should_know.php
2 Here's one example:
http://groups.google.com/group/google-safe-browsapigbrowse_thread/thread/950c15743e0a3c19/7d1f86861160
3 Hackers Hijack a Half-Million Sites
http://www.pcworld.com/businesscenter/article/148Packers_hijack_a_halfmillion_sites.html
4 Massive SQL Injection Attack 600.000++
http://www.0x000000.com/?i=556
5 Google Hacking Database (GHDB)
http://johnny.ihackstuff.com/ghdb.php
6 Interview with a link spammer
http://www.theregister.co.uk/2005/01/31/link_spaniaterview/
7 Spamdexing: Link Spam
http://fen.wikipedia.org/wiki/Link_spam#Link_spam
8 Hacked bank server hosts phishing sites
http://www.computerworld.com/hardwaretopics/harde/aerver/story/0,10801,109500,00.html

3. Infect users — your visitors represent an incetream by exploiting their computer and adding ithte
attacker's botnet. Their computer can then be tesednd spam, launch denial-of-service attackdede
out to others, et And your visitors' computer can also be seardbedaluable data, and in
combination with a keylogger, the attacker canlgieesonal information, drain bank accounts, aid se
this information to other& In fact, your visitor's computer is so valualfiattbotnet operators have been
known to apply security patches and run defensamsigmalware to prevent other bot herders frormtak
over their botg3

And should you decided to only allow certain IP r@ddes or registered users to interact with tlee lgitow that if it
sits on a shared server, it still may be vulneratdea weakness in another webapp on the samersérve

GOLDEN RULE OF CLIENT INPUT

Now that you understand the “why” of WebAppSec rev@ow going to delve into the “how” of specific e
application vulnerabilities. As we do, keep in thilhe golden rule of client input:

“All client input (headers and request) is hostileuntil proven otherwise or sanitized.”

To understand how to prove client input isn't Hestill first start with input validation, then fow it with
discussions about four common web application valpiities: SQL injection, cross-site scriptingpss-site
request forgeries, and side-jacking. By the entthigfpaper, you should have a firm grasp of commeh
vulnerabilities.

10

11

12

13

14

Storm For Rent
http://www.forbes.com/technology/2008/01/09/storamma+cybercrime-tech-security-cx_ag_0109storm.html
Home PCs rented out in sabotage-for-hire racket
http://www.usatoday.com/tech/news/computersecB€i64-07-07-zombie-pimps_x.htm
Know your Enemy: Tracking Botnets

http://lwww.honeynet.org/papers/bots/

Underground market for stolen IDs thrives
http://www.usatoday.com/money/industries/techndR@f5-03-02-datathieves-usat_x.htm
Zombie PCs growing quickly online
http://news.bbc.co.uk/2/hitechnology/4685238.stm

MSN IP Search

http://ha.ckers.org/blog/20080803/msn-ip-search/

INPUT VALIDATION

Input validation and sanitation are important tdolprotecting your web application. Any input damfrom the
user must be either validated (that is, make swealata is in a verified, expected format) or szt (only accept
whitelisted data or transform the data into a $afmat). Failure to do either of these will expgsair web
application to a variety of attacks.

Let's first talk about whitelisting versus blacklig. Whitelisting means you have a limited seadofeptable inputs;
you either reject or remove anything non-validadlisting means you have a limited set of UNacaielgtinputs;
again, you either reject or remove anything nondvalWhile they don't appear to be much differavtijtelisting is
much more secure because you're guaranteed tgenWhat you allow. Blacklisting has the disadeget in that
you must imagine all attack scenarios and try ¢éxkleach one. A good example of this is tryinglacklist
malicious HTML — imagine you wish to block the <igte tag by looking for “<script”; what you fail tcealize is
there are UTF-8 whitespace characters that candeetéd into the string that will thwart your bléisk but still
allow the <script> tag to be recognized by the lsem(e.g. “<scr*ipt” where the asterisk is a Unieadhitespace
character}> You should use blacklisting sparingly or as eoséary defense.

The types of validations you should perform depesdgvhere and how the user input is used. Indtterlsections
on the vulnerabilities, I'll discuss the specifaigdations required for them. But for now, I'll gger generic
validations.

Let's first identify the sources of user input

Query parameters in the URL

The path of the URL (may be echoed as part of "Dt not found" error messages)

Form fields (including hidden fields)

Cookies

Other parts of the HTTP request header (such asfeaer URL)

Data that was inserted into a data store in afeeardnsaction, possibly by a different user (engssages
in Google Groups, Orkut, GMail).

Data obtained from a datafeed (e.g. merchant fee@®ogle Product Search)

e Data crawled from the web (Google Search) or tkalldisk (Google Desktop)

As you can see, there are a variety of ways uget iis received by Lasso. If you don't use thadstich as the
referrer), then you don't have to validate it. Yomly validate the user input that gets used iryeeb application.

A general approach to validation is to only allolWatryou're expecting. So if you're expecting dader, then
either validate that it's an integer, or explicithst it as an integer. For example:

/ validate integer

if(string_isDigit(action_param(‘quantity")));
Il it's an integer!

[if;

/I cast to integer to ensure it's an integer
integer(action_param(‘quantity"));

Personally, | prefer to cast it to the type | wahgn perform further validation on it (such as mgksure it's non-
zero for example). You'd do similar validationAag on decimals and dates too.

15 More about whitespace characters used to thuaklisting:
http://www.gnucitizen.org/blog/snippets-of-defepset

16 Verbatim from: Introduction to Cross-Site ScrigtiVulnerabilities
http://code.google.com/p/doctype/wiki/ArticleInttmtion ToXSS#Sources_of _Untrusted_Data

When using HTML forms, be sure checkboxes, selacemnything else with limited choices really onlioass the
limited choices. For example:

var('valid_choices') = (:'Red','Green’,'Blue’);

var('choice’) = 'Red'; // default

if($valid_choices->contains(action_param('choice')));
$choice = action_param(‘choice");

if;

When using hidden inputs on forms, you either sthaalidate that they contain a value that's actéptar better,
just encrypt them, then decrypt them on the resppage. That will prevent a malicious user froraraing them.
You can use [lp_var_pacKJand [Ip_var_unpacl{to perform the encryption/decryption.

Strings can be validated in a variety of ways,eeample Lasso can validate email addresses anid caed
numbers (validate that their format matches a kngawd format). You can also build custom validatior phone
numbers, identifiers such as Social Security nusifiéin the States), etc.

For URLs, Google offers a “Safe Browsing APthat allows you to verify if the URL is a known
phishing/malware site. While a Lasso interfaceh®dAPI doesn't currently exist, it's on my progelist, so expect
one in the future.

Input validation is the corner-stone of web appl@asecurity; remember the Golden Rule of Cliewtut:

“All client input (headers and request) is hostileuntil proven otherwise or sanitized.”

Now let's look at specific web vulnerabilities, réitag with SQL injection.

17 [lp_var_pack]
http://tagswap.net/lp_var_pack

18 [lp_var_unpack]
http://tagswap.net/lp_var_unpack

19 Google Safe Browsing API
http://code.google.com/apis/safebrowsing/

SQL INJECTION

SQL injection attacks occur when unsanitized cligptit is allowed to be used in a SQL query. Whaemitigated,
an attacker can create their own SQL queries aig@ing datasource (or more likely is an automatexd will
compromise your web applicati®y This isn't an issue if you use classic inlth@s Lasso will sanitize the client
input for you, but if you use -sql inlines, thenuymust understand how to protect against SQL iigjeét

There are two ways in Lasso to protect against #ggiction when you want to write your own SQL queoye is
to use Prepared Statements and the other is tlulbateuild a SQL query string using sanitize cliemput.

Prepared Statements provide the best protecticausemo sanitation is required on the client iyetityou still get
to use a SQL query string. Note that not all SQErees are supported as Prepared Statements in Mysa(he
sure to read the MySQL documentation for more 8&taiHow Prepared Statements in Lasso works is yoplgim
specify the query you want to execute, providedda one or more times and Lasso handles the rest.

An example of a Prepared Statement in Lasso |ldk&gHis:24

Inline(-Database='Contacts', -Table="People’,
-Prepare="INSERT INTO people (‘first name’, “last n ame’) VALUES (?, ?))";

Inline(-Exec=Array('Bil','Corry"));
/Inline;
Inline(-Exec=Array($firstname, $lastname));
/Inline;
Inline(-Exec=Array(action_param(‘firstname'),action _param('lastname"));
/Inline;
/Inline;

| won't delve into specifics about how to use Pregétatements as it's well covered in the Lassmliage Guidé
and a Tip of the Weeékand is beyond the scope of this paper.

Building your own SQL query strings for -sql inlsés where developers get into trouble; all clieput must be
sanitized before it can be used in a -sql inlik@w it gets sanitized depends on where in the S@rygstring
you're inserting the client input.

Let's walk through the four most common injectiaints in SQL query strings and how to secure them.

20 Mass SQL Attack a Wake-Up Call for Developers
http://www.technewsworld.com/story/Mass-SQL-Attadkake-Up-Call-for-Developers-62783.html

21 By “classic inlines” | mean inlines where you aifyean action other than -sql (e.g. -add, -deletl) Filemaker inlines are classic inlines.

22 Examples of real-world SQL injection is here:
http://www.evilsgl.com/

23 MySQL Documentation - 12.7. SQL Syntax for PrepaBtatements
http://dev.mysgl.com/doc/refman/5.0/en/sql-syntepared-statements.html

24 Adapted from example in Lasso Language Guide:
http://docs.lassosoft.com/Lass0%208.5/003%20Lang4@PGuide/002%20Database/007%20Database%20Intersdt20Fundamentals/
index.lasso#PreparedStatements

25 Prepared Statements — Lasso Language Guide
http://docs.lassosoft.com/Lass0%208.5/003%20Lang4@Guide/002%20Database/007%20Database%20Intersdt20Fundamentals/
index.lasso#PreparedStatements

26 Lasso 8.5 MySQL Prepared Statements — Tip oiteek for September 8, 2006
http://www.lassosoft.com/Documentation/TotW/in@esd?9185

27 Much of this is adapted from my 2004 article @LSnjection:
http://tagswap.net/articles/SQL_Injection/

Strings

SQL injection into SQL strings happens when a ysexided string is merged into a sql inline and doetes used
to delimit the SQL string are also contained witthia user-provided string. Here is a SQL query phags in the
user-provided value for searching on a first name:

var('sql')="SELECT name_first, name_last FROM conta cts WHERE
name_first=""+action_param(firstname")+"";

Imagine firstname = "Bil" - the sql query becomkis:t

SELECT name_first, name_last FROM contacts WHERE na me_first="Bil'
So far, so good, right? Now imagine instead the estered:
crackerboy'; delete from contacts; #

Now the query becomes:

SELECT name_first, name_last FROM contacts WHERE na me_first="crackerboy";
delete from contacts; #'

Violal Your entire contacts table is hosed. (Themebsign # tells MySQL that the rest of the lin@isomment).
So how do you prevent SQL injection into SQL stsihgYou must escape all the quotes in the datadedby the
client. Fortunately, Lasso has a built-in tag ¢atdfor you, [encode_sdh

Here's the original query rewritten to use it:

var('sql')="SELECT name_first, name_last FROM conta cts WHERE
name_first=""+encode_sql(action_param(‘firstname’)) +

So properly encoded, now the query becomes:

SELECT name_first, name_last FROM contacts WHERE na me_first="crackerboy\’;
delete from contacts; #'

That slash \ in front of the embedded quote teNsSHIL to ignore it, and thus, the entire string bees the
name_first search criteria.

So that's how you protect your strings in quetiess,what about numeric values?

Numeric Values

Unfortunately, numeric values can not be protectsdg encode_sql; reason being you wouldn't (ndyinahve
quotes around the value to begin with, so you watitked to escape any quotes being sent.

So let's take a look at a query that uses a numehie:

var('sql')="SELECT name_first, name_last FROM conta cts WHERE
userid = "+action_param(‘userid');

28 [encode_sql] is for MySQL datasources. Thelss [@ncode_sql92] for datasources that requinéferent type of escaping, such as
SQLite.

Imagine userid = "123" - the sqgl query becomes:
SELECT name_first, name_last FROM contacts WHERE us erid =123

Already this has a problem, the user could feediesatinl numbers to your query and pull out thererdatabase
list. But that's another topic for another time.

Now imagine instead the user entered:

123; delete from contacts;

Now the query becomes:

SELECT name_first, name_last FROM contacts WHERE us erid = 123; delete from contacts;
Violal! Your entire contacts table is hosed. (Notice theme here?)

And even if we encode_sql the passed-in valuegitldn't change anything. So how do you preverdttatker
from hosing your table this time? Make sure that gaplicitly pass a numeric if that's what your yuis expecting.

While you could validate the passed-in value tauemdt's numeric using something like [string_is}id instead
just cast it explicitly to a numeric using [intepand [decimal] (depending on if the query needinteger or
decimal).

So let's rewrite that query to prevent sql injectior integer:

var('sql')="SELECT name_first, name_last FROM conta cts WHERE
userid = "+integer(action_param('userid’));

So what happens, you ask, if the user provideotleving?

123; delete from contacts;

Well, when Lasso converts a string to an integaetemimal, it takes every digit it can until it hasnon-numeric
character. So casting to integer, the query woaltbme:

SELECT name_first, name_last FROM contacts WHERE us erid =123

Decimals are handled in an identical fashion.

Date Values

Dates in MySQL can either be strings or numeric3I@y. accepts either. But to prevent SQL injectibtwe, trick is
to cast the passed-in value to a Lasso date typg [date] and formatting the output for MySQL:

var('lassoDate") = Ip_date_stringToDate(action_para m(‘'date’),-error=date);
var('sgl')="SELECT name_first, name_last FROM conta cts WHERE
last_login <= "+$lassoDate->format('%Q");

Since a Lasso date type can not hold anything dlizer dates, you are assured that any bogus stitidse
rejected when trying to cast it to a Lasso date.

LIKE Queries

LIKE queries are really just strings, but with adra twist of pattern matching. What that meansliE queries
will recognize special characters within the strasgwildcard characters, namely, “%” and “_". Yanaead more
about what “%” and “_" do in a pattern-matching guim the MySQL documentatiofd.

To show how “%” and “_" can be abused, let's sbéfrtvith an example query:

var('sql')="SELECT name_first, name_last FROM conta cts WHERE
name_last LIKE "+encode_sql(action_param('lastname)+"%"™;

This query will allow someone to enter the firdtde(s) of a last name, and find all contacts begin with them.
So imagine the user entered "cor” (you plan toirecand validate that they entered at least thhegacters), the
query would look like:

var('sgl')="SELECT name_first, name_last FROM conta cts WHERE
name_last LIKE 'cor%'

But imagine if the user entered "%%%", that wouddidate as three characters and the query wouldnbec

SELECT name_first, name_last FROM contacts WHERE na me_last LIKE '%%%%'

That query would find all of your contacts! So htmhandle LIKE? You have two options. Either remailé%”
and “_" found in the string or escape them by reiplg “%” with “\%” and “_" with “_". Be sure to &l
encode_sql the string. Note that you only escapedid “ " for LIKE queries (or any of the other pain-
matching queries that recognize “%” and “_"), d@dtdoing it on all your query strings.

29 MySQL Documentation - 3.3.4.7. Pattern Matching
http://dev.mysql.com/doc/refman/5.0/en/pattern-matg: html

CROSS-SITE SCRIPTING (XSS)

Cross-site scripting (XSS) attacks occur when uitigad client input is used in content served t® thient and/or
others. When unmitigated, XSS can perform actioribe context of the site serving the page. Tltiack can steal
cookies, modify the web application behavior, adify the DOM/page contefit often without the victim
knowing the attack had occurré&d.

To get a sense of how prevalent this attack ssiriteresting to note that financial sites sucRitibank, Barclays,
Paypal and HSBC, security vendors such as McAfeeisign and Symantec, and large sites such as €oeghy,
Facebook and MySpace currently have, or have h&&lWfherabilities within the last six montfs.

When looking at solutions to protecting your welplagation, it should be noted that it is very diffit to blacklist
all bad content — there are many ways to evadacklist filter?®. A better approach is to only allow whitelisted
content and/or encode the content to render it safe

Let's look at a simple example. Imagine you hapage where the user enters a search term, whitieaesponse
page shows up as:

[var('search’) = action_param('search_term")]
Your search for [$search] found [found_count] resul ts.

Imagine the user entered:

test<script>alert(‘hello’)</script>

Now the page, as served to the user, would loak lik

Your search for test<script>alert(‘hello’)</script> found O results.

The user would then see a dialog box with “hells'ttae dialog alert text (assuming JavaScript wabled in the
user's browser). Now that isn't terribly intenegtbecause most user's are not trying to explerntielves. But
imagine now that we take it one step further améigr an URL that will take any user to the pagesiodv them
the exploit:

http://mysite.tld/response.lasso?search_term=test%3 cscript%3ealert(%27hello%27)%3c%2fscript%3e

Now a malicious site can redirect a user to thevalidRL and execute a script of the attacker's dhgads the
context of the vulnerable site. And while alertlhgllo’ isn't terribly interesting, an attackenisich more likely to
script a solution that steals cookies or perfororaes other maliciousness.

30 Google doctype — Introduction to Cross-Site SeripVulnerabilities
http://code.google.com/p/doctype/wiki/ArticleInttmtion ToXSS

31 Wikipedia — Cross-site scripting
http://fen.wikipedia.org/wiki/Cross-site_scripting

32 </xssed> xss attacks information
http:/iwww.xssed.com/

33 XSS (Cross Site Scripting) Cheat Sheet
http://ha.ckers.org/xss.html

The above example used a request parameter toiteth@ite, it is possible to use other clientunpectors, such
as user-agents referrer®, file download¥®, cookie#’, or any other data received from the client thaised by the
web application.

Now that we've discussed the issue, let's lookagsvio protect against it. The first thing to urstiend is we're
trying to prevent client input from becoming soneth malicious. How you protect against it depeedsrely on

what you're doing with the client input. For exaeyusing our vulnerable code above, to protectaplication
against XSS, we can encode_html the user input:

Your search for [encode_html($search)] found [found _count] results.

Now the page, as served to the user, would loak lik

Your search for test<script>alert('hello& #39;)</script> found O results.
That fixes the problem by rending the <script> énptext instead.

Let's look at protecting against XSS in the thresitommon situations:

HTML Body

When client input is used within the <body> of y@age, you should use [encode_html] to encode it:

Your search for [encode_html(action_param(‘'search_t erm’))] found [found_count] results.

HTML Attribute *
When client input is used within a HTML tag attribuagain use [encode_html]:
<input type="text" name="test" value="[encode_html(action_param(‘test'))]">

In addition, be sure to surround the attribute wjttotes to prevent attribute injection attackshsas vulnerable
code looking like:

<input type="text" name="test" value=[encode_htmi(a ction_param('test'))]>

Which when feed this:

test onmouseover=evil_script()

34 Vulnerable Vulnerability Databases
http://www.0x000000.com/?i=546

35 A Second-order of XSS
http://blogs.iss.net/archive/SecondOrderXSS.html

36 Google XSS
http://xs-sniper.com/blog/2008/04/14/google-xss/

37 XSS, Cookies, and Session ID Authentication -e&hngredients for a Successful Hack
http:/iwww.informit.com/articles/article.aspx?p=6037 &rll=1

38 HOWTO filter user input in regular body text
http://code.google.com/p/doctype/wiki/ArticleXSSUdBT ext

39 Google doctype — HOWTO filter user input in tamilautes
http://code.google.com/p/doctype/wiki/ArticleXSStriButes

Becomes:

<input type="text" name="test" value=test onmouseov er=evil_script()>

That will cause a malicious script to execute wtienmouse is moved over the <input>.

URL Attribute #°

When client input is used within an URL attributiee [encode_strictURL] to properly encode theiuinpFor
example, imagine your code looks like:

[var(‘test’) = action_param('test’)]
Test

If the user supplies the following for the “testirameter:

test"<script>alert(‘ok’)</script>
Then the page is served as:

<a href="test.lasso?param=test"<script>alert(‘hello "\</script>">Test
Which triggers the JavaScript. Adding [encodecitiRL] fixes the issue:

Test

The browser is served:

Test

Problem solved.

Other Attack Vectors

For further reading, Google's doctype project dngseat job of providing details on protecting agaiXSS in a
variety of scenarios, including JavaScript and Ifasl highly recommend reading through it to bettederstand
how to protect against XSS.

40 Google doctype — HOWTO filter user input in URtriautes
http://code.google.com/p/doctype/wiki/ArticleXSS1Attributes

41 Google doctype — Web security
http://code.google.com/p/doctype/wiki/ArticlesXSS

CROSS-SITE REQUEST FORGERIES (CSRF)

Cross-site request forgery (CSRF aka XSRF) attackar when a victim's browser is secretly diredted target
site and as a result, an action is performed oalbehthe victim as if the victim him/herself hagquested it?
Typically, there isn't any indication to the victiimat any such action has even taken place.

A simple example to illustrate. Say you visit adam site and it has the following embedded in it:

Your browser would try to retrieve an image frorattRL, and in doing so, would send a request togiousing
your credentials (assuming you've visited Googlleadt once). From Google's point of view, theussy appears
legitimate because it's coming from your browsehwbur cookies. If successful, the above attaokld change

your default language with Google to Pig Latint@mately Google has fixed that CSRF vulnerabilgy (lon't try it
at home)?

I should note here that with pure CSRF, the attaiskguessing you're a user that is authenticatddanparticular
website and that you're currently “signed in”. Aatbw that the attacker does not have access tootftent
returned by the server. The attacker can onli fraur browser into sending a request to a semdrtlaat's the
extent of the attack. But even with those limdas, there are a lot of interesting attacks thatbedone.

Some real-world exampl¥susing CSRF to perform SQL injection against PHR&Inin®, attacking a site that
isn't vulnerable to XSS and using it's IMAP seragainst it in a reflected attgékcookie stuffing to defraud
affiliate program§&, and perhaps one of the more devious uses is Sits&ile Upload attacks

There are two preferred ways to defeat a CSRFlatise a unique token or re-authenticate the user.

The way a unique token works is a sufficiently mmdtoken is added to each request, then the seeviéies the
unique token and allows the action. If the unitpleen is not present or incorrect, the server egct the request
and/or ask the user to re-authenticate. This piteV@SRF because the attacker won't know the t@whthus can't
create a valid request for the victim.

Re-authenticating the user acts as a simple “Atesgme?” measure. Since the attacker won't knewdername
and password for the victim, it isn't possible tosessfully execute a CSRF against the target.

Beyond those two methods, there are a few otbeadsfeat a CSRF attack, but they have caveatsrihke them
less desirable to implement. | don't recommendgugiem, but you can read more about using refgrdeuble-
submit cookies, and POST-only requests at Wikip#diderested?

42 A nice CSRF overview is here:
http://www.0x000000.com/index.php?i=309&bin=1001001

43 Security Threat: Cross Site Request Forgery (JSRF
http://itmanagement.earthweb.com/secu/print.php2823

44 CSRF Hacking Database
http://csrf.0x000000.com/csrfdb.php?do=browse

45 SQL Injecting PhpMyAdmin
http://www.0x000000.com/?i=587

46 The Extended HTML Form Attack Revisited
http://enablesecurity.com/2008/06/18/the-extended-form-attack-revisited/

47 Affiliate Programs Vulnerable to Cross-site Rexjieorgery Fraud
http://www.cgisecurity.org/2008/08/affiliate-progtml

48 Cross-site File Upload Attacks
http://www.gnucitizen.org/blog/cross-site-file-uatbattacks/

49 Wikipedia — Cross-site request forgery
http://en.wikipedia.org/wiki/CSRF

To give a better idea of CSRF works and how tatfilet's look at a typical Lasso implementatioatth vulnerable
to CSRF. I'm going to use a very benign examp¢ wWouldn't normally be of much concern in the ngatld, but
it'll get the idea across.

Let's say we have a web application that has alsif§ign Out” link on every page. The “Sign Ouitik looks like
this:

Sign Out

The page signout.lasso works by expiring the ctilcesso session. So with that knowledge, a malgite could
target ours by adding this to one of its pages:

By visiting that malicious page, our session wdaddterminated on our site. If you remember, tlaeestwo ways
to defend against this CSRF attack. One is taitkemticate the user. So on the signout.lasso, fitageuld
prompt the user to enter their username and padswa@uthorize the signing out action. In the eahbf our
malicious page, the request generated by the <igHML tag would no longer work since a username and
password are now expected.

The other way to defend against this CSRF attatk isse tokens. Using this technique our signioktwould then
become:

Sign Out

The page signout.lasso would look at action_patakgh’) and make sure it matched the value expected can
store the value expected in the user's sessian,aodatabase, or you could go another route astdad just
encrypt_blowfish the current time and some usentifier (user id, IP address, etc) as the tokean thn
signout.lasso decrypt it making sure that the tisngithin five minutes of when it was created ahe tdentifier still
matches the current user.

SIDE-JACKING

Side-jacking attacks can occur when a user isr{lg network that is sniffable, (2) the packetsteaeeling
unencrypted, and (3) the user is using a web agtfit that utilizes cookies to maintain user sassiol he attack is
carried out by watching for traffic that contairsokies. By capturing the cookie and replicatingritthe attacker's
own system, the attacker can then pretend to bei¢tien to the web application.

As you can see from the description, side-jackamy iso much a server issue as it is a client issaga user, you
can protect yourself by never using open wi-fi ratwg (or if you must, use VPN to encrypt all of yaraffic);
always use HTTPS when possible; and you can mitigaine risk by logging out explicitly from web aipptions
(which renders the session cookie usel&ss).

There are some measures a server can take to minthe risk for its users. The best solution isutoall
authenticated sessions (those in which a useolaed in) exclusively through HTTPS. When doingls®sure to
detect if a user tries to connect via HTTP andresdito HTTPS if they do. Also, be sure to use-t@eure option
of [session_start] for the user session; this prilvent the session cookie from being sent on HTW#RGh is an
important defense to accidentally leaking the cealdta outside the HTTPS connection.

Another good practice is to provide a mechanisnugars to log out of the application; as mentioaleodve, this
helps mitigate the risk of side-jacking by invalidg the session. So even if the attacker captinesession cookie
data, if the session is invalid, it can't be us@dd of course, limiting the session life to sonileghshort (under a
half-hour) is also good practice as many usersmeitelog out themselves.

If you're not running HTTPS, then beyond the isstibaving cookies stolen via side-jacking, you diswe the
problem of the user's username and password beigrscleartext when logging into the web applamat The
best solution for that is to use Digest Authentaat.

As for preventing side-jacking in a scenario whibie packets are sniffable and unencrypted, there fbullet-
proof” method. The best you can do is to credfingerprint” of the browser that successfully laglin, store the
fingerprint in the session, then detect when a beywvith a different fingerprint tries to use tlession. The
fingerprint can be anything unique to the requashsas user-agent, ip address, language preferexiceslust
know in the case of IP addresses, users behindxy pray all share the same IP address (so you watth an
attacker if he is on the same wi-fi network thatasted through a common proxy), and also one lnskind a proxy
may have multiple IP addresses, as is the caseA@tr% I'd recommend filtering on IP address unlessuser
requests that the IP check be turned off (makptiboal).

Another solution is to rotate session IDs, issingew session ID on every page reqbiesthe advantage to that is
the session ID lives only for as long as the lewitie user stays on the current page, so it forcastacker to move
immediately against the victim. The disadvantagié has some funky behavior when reloading theeagising
the back button if you embed the session ID inlitlies rather than as a cookie, so experiment witnd see if it
will fit your needs.

If you're interested in seeing side-jacking in @gtithere's a tool you can use called “Ham&tealthough | believe
it's Windows-only currently.

50 'Sidejacking' Tool Unleashed
http://www.darkreading.com/document.asp?doc_id=P206
51 Wikipedia — Digest access authentication
http://en.wikipedia.org/wiki/Digest_access_authestion
52 AOL Proxy Info
http://webmaster.info.aol.com/proxyinfo.html
53 It's experimental in Lasso — Fletcher talks alitantthe thread “Kill Session on Close Browsemdbw” from 2005-09-29:
http://www.listsearch.com/Lasso/Thread/index.lad®57 2#203922
54 SideJacking with Hamster
http://erratasec.blogspot.com/2007/08/sidejackiritihamster_05.html

SUMMARY

It is clear that the days of security by obscuistiong dead. Given that the financial rewardscidminal activity

has climbed into the billiofsand the risk of being caught is sligiand even if caught, it might work out favorably
anyhow?"), security must now be an integral part of anyapplication. It is no longer a question if the
financially-motivated bot masters, with hundredshafusands of computers at their disposal, witl flou®, it's just

a matter of when. And when they do, what will tHiewl?

The goal for this paper is to give you insight itte most common vulnerabilities found in web agations. With
education and proper planning, security doesn'¢ labe something that is accounted for after aticgiion has
been deployed, but instead can be part of the dprent and testing cycle.

In the appendices that follow, you'll find a ligtauditing tools, helpful Firefox plug-ins, additial topics to
explore, and a couple of professional groups tickam joining. These lists are not exhaustive,rhtiter are a
starting point from which you can expand your kresge and education of WebAppSec.

The last appendix is a list of blogs that | reagutarly which has greatly expanded my own pers@nalvledge of
WebAppSec issues. | definitely suggest adding tteegour favorite RSS reader; security is an omgdéarning
process and being exposed to new ideas is a gegatonncrementally increase the depth and breafiylour
WebAppSec knowledge.

ABOUT THE AUTHOR

Bil Corry is founder of Lasso.Pro, an internationab application development and consulting firracalizing in
scalable, secure web applications. Bil has begaldping web applications using Lasso for more th@ryears.
During this time, he also has been a major conivibio the Lasso community, including participatimg LassoTalk
(top 5 all-time contributor); code contributions t&mail_Send, Auth Tags, PDF Tags, Memory Sessiandder,
File_Serve, LassoWiki and others; code contribion TagSwap.net which include more than 100 cushgst
article and edit contributions on LassoTech; winmfea Lasso Programming Challenge; and has spdkan a
previous Lasso Developer Conference. Bil holdegree in Computer Science from California Statevehsity,
Fullerton.

CONTACT INFORMATION

Bil Corry

Lasso.Pro (http://lasso.pro)
Phone: +1 240 337 2514

Email: (my first name)@lasso.pro

55 Online Threats Cost Consumers $8.5 Billion OwastlTwo Years
http://news.yahoo.com/s/cmp/20080805/tc_cmp/20D 16

56 Why Hackers Are A Step Ahead of the Law
http://news.cnet.com/2009-1017-912708.htmI?hhTeted=fd_lede

57 New Zealand Hacker Released As Police, JudgsefButors All Praise His Mad Hacking Skillz
http://techdirt.com/articles/20080716/123648170&1gh

58 Attacking Around the Globe Around the Clock
http://blog.imperva.com/2008/04/attacking-arouné-tfiobe-aro.html

APPENDIX A — AUDITING TOOLS

Burp — integrated platform for attacking web applicaso
http://portswigger.net/suite/

Google Ratproxy— passive web security assessment tool:
http://code.google.com/p/ratproxy/

Hamster/Ferret — tool for testing side-jacking:
http://erratasec.blogspot.com/2007/08/sidejackiitf-tvamster_05.html

Metasploit —somewhat of a Swiss Army knife for attacking ayédr
http://www.metasploit.org/

Pantera Web Assessment Studie web application analysis engine:
http://www.owasp.org/index.php/Category:OWASP_Pamt&/eb_Assessment_Studio_Project

Paros Proxy— web application security assessment:

http://www.parosproxy.org/

APPENDIX B — FIREFOX PLUG-INS

Firebug — Firefox plug-in that allows viewing XHR requgsscript debugging, and much more:
https://addons.mozilla.org/en-US/firefox/addon/1843

Firecookie — Firefox plug-in that allows viewing and managguapkies:
https://addons.mozilla.org/en-US/firefox/addon/6683

Live HTTP Headers — Firefox plug-in for viewing the HTTP headersmggpbetween Firefox and the server:
https://addons.mozilla.org/en-US/firefox/addon/3829

NoScript — Firefox plug-in that allows turning JavaScript/off, must have to protect your browser too:
https://addons.mozilla.org/en-US/firefox/addon/722

TamperData — Firefox plug-in to view and modify HTTP/HTTPSduers and post parameters:
https://addons.mozilla.org/en-US/firefox/addon/966

User Agent Switcher— Firefox plug-in that allows easy switching bétuser agent:
https://addons.mozilla.org/en-US/firefox/addon/59

Web Developer— Firefox plug-in that provides a variety of tofds web development:
https://addons.mozilla.org/en-US/firefox/addon/60

XSS-Me& SQL Inject-Me — Firefox plug-ins for detecting XSS and SQL iniec vulnerabilities:

http://securitycompass.com/exploitme.shtml

APPENDIX C — ADDITIONAL TOPICS
Additional topics to explore (in no particular orjle
Timing Attacks — be sure to read Section 6, “Timing and its icgtions for Privacy” in the PDF:

http://www.sensepost.com/research/squeeza/dc-15-immee _slaviero-WP.pdf
http://ha.ckers.org/blog/20080828/more-timing-ps@m-enhancements/

Client Authentication — Do's and Don'ts:
http://prisms.cs.umass.edu/~kevinfu/papers/webaugdf

ZeroSum — create checksums of web directories to detebitimas changes to your web app fif€s:
http://www.0x000000.com/?i=550

Logic flaws — some examples where logic flaws were exploited:

Man Allegedly Bilks E-trade, Schwab of $50,000 byll€cting Lots of Free 'Micro-Deposits'
http://blog.wired.com/27bstroke6/2008/05/man-altigen. html

Youtube’s 18+ Filters Don’'t Work
http://www.darkseoprogramming.com/2008/06/01/yoeth 8-filters-dont-work/

Privacy flaw exposes Paris Hilton and Lindsay Ldkamivate MySpace photos
http://blogs.zdnet.com/security/?p=1244

Yahoo SEM Logic Flaw
http://ha.ckers.org/blog/20080616/yahoo-sem-lotaef

AT&T using User-Agent to give free wi-fi to iPhonas Starbucks:
http://blogs.zdnet.com/security/?p=1067
http://www.darkreading.com/blog.asp?blog_sectiodi$iz&doc_id=153200

Inside Jobs— some examples how people on the inside breactytem:

Hidden Code Costs Poker Players Thousands
http://catless.ncl.ac.uk/Risks/25.20.html#subj3

S.F. officials locked out of computer network
http://www.sfgate.com/cgi-bin/article.cgi?f=/c/a)07/14/BAOS11P1M5.DTL

One in three IT staff snoops on colleagues
http://www.msnbc.msn.com/id/25263009/

Day of Reckoning? Super Rich Tax Cheats Outed mkEHerk
http://abcnews.go.com/Blotter/Story?id=5378080&pdge

Data voyeurism is common
http://redtape.msnbc.com/2008/03/surprised-by-Ail.ht

59 On my to-do list is to port this to Lasso.

ModSecurity — an Apache module that acts as a web applicitemall:
http://www.modsecurity.org/

Google DocType- articles on web security:
http://code.google.com/p/doctype/wiki/ArticlesXSS

Google Code University— web security courses:
http://code.google.com/edu/security/index.html

Web Application Hackers Handbook— attack checklist from the book
http://portswigger.net/wahh/tasks.html

Internet Jurisdiction — where are your websites physically located?

Do The Good People Of Florida Think Your Websit®©lsscene? You Better Hope Not.
http://www.alleyinsider.com/2008/6/do_people_inriia think your_website_is_obscene_

Host-Proof Data Encryption — data stored by the server is encrypted in sughyathat only the user can view it:
http://ajaxpatterns.org/Host-Proof _Hosting#Solution
Rich Content Filters — allowing users to upload HTML can be risky:

Bullet-proof rich content filters:
http://www.gnucitizen.org/blog/bulletproof-rich-ctamt-filters

HTML Purifier
http://htmlpurifier.org/

Infected Devices- brand-new devices pre-installed with malware:

HP USB Keys Shipped with Malware for your Proli&#rver
http://isc.sans.org/diary.html?storyid=4247&rss

Back doors in embedded devices (printers, rougic3,
http://blog.washingtonpost.com/securityfix/20084&t/ paid_to_find_software hard_1.html

Devices shipping from abroad with malware
http://www.darkreading.com/blog.asp?blog_sectiodigiz&doc_id=148583

HTTP Response Splitting- http header injection:

http://www.aspectsecurity.com/documents/Aspect_Elil@wnload_Injection.pdf
http://www.securityfocus.com/archive/1/425593

Open Redirects— spammers using open redirects to make their sjgo@ar more legitimate:

http://blog.washingtonpost.com/securityfix/2008Kiddy_site_redirects_abundant_1.html
http://ha.ckers.org/blog/20080716/redirection-repor

Internet Behavior — your online behavior can reveal much about ya&lfirs

Google has patents that can detect your age, @ihnigading level, income, etc:
http://yro.slashdot.org/article.pl?sid=08/03/22/42%3

Using your browser URL history to estimate gender
http://www.mikeonads.com/2008/07/13/using-your-bsewurl-history-estimate-gender/

Spyjax - :visited spy tool
http://www.merchantos.com/makebeta/tools/the-spyeiad/

Know which social sites the visitor uses
http://azarask.in/blog/post/socialhistoryjs/

Track users browsing via :visited link coloring
https://bugzilla.mozilla.org/show_bug.cgi?id=147#¢78

CSS Spying
http://jeremiahgrossman.blogspot.com/2006/08/i-kivavere-youve-been.html

Logging — a case against logging:
http://mwww.0x000000.com/?i=612
CAPTCHA - it will stop amateurs, but not anyone motivated:

Inside Craigslist's Increasingly Complicated Ba&fginst Spammers
http://techdirt.com/articles/20080523/032715121thah

How CAPTCHA got trashed
http://www.computerworld.com.au/index.php/id;489835;fp;;fpid;;pf;1

Breaking The Google Audio Captcha.
http://mww.0x000000.com/?i=560

Human CAPTCHA Breaking
http://ha.ckers.org/blog/20080311/human-captchaiing/

Inside India’s CAPTCHA solving economy
http://blogs.zdnet.com/security/?p=1835

Captcha's broken by mules
http://lwww.theregister.co.uk/2008/04/10/web_maitottied/

PWNtcha
http://libcaca.zoy.org/wiki/PWNtcha

File Uploads— allowing files to be uploaded is risky:

Evil GIFs: Partial Same Origin Bypass with Hybriies
http://radar.oreilly.com/2008/06/partial-same-amifiypass-wit.html

GIFAR - A photo that can steal your Facebook actoun
http://www.computerworld.com/action/article.do?coamd=viewArticleBasic&articleld=9111298

Backdooring images
http://www.gnucitizen.org/blog/backdooring-images/

New Worm Transcodes MP3s to Try to Infect PCs
http://www.pcworld.com/businesscenter/article/14&6@w_worm_transcodes_mp3s_to_try_to_infect_pcs.htm

CPU Attacks — targeting errata in processors

Researcher to demonstrate attack code for Intpbchi
http://www.infoworld.com/article/08/07/14/Researchte_demonstrate_attack_code_for_Intel_chips_1.html

Password Reset security questions to reset a password are begoaiess secure way to authenticate:

Researcher mines blogs, social networks to ac@dsdccounts
http://mwww.computerworld.com/action/article.do?coamd=viewArticleBasic&articleld=9113405

| forgot my password! (Now what?)
http://www.ravenwhite.com/iforgotmypassword.html

‘Forgot your password?’ may be weakest link
http://redtape.msnbc.com/2008/08/almost-everyong.ht

Column truncation & max_packet_size vulnerabilities— interesting attacks:

http://www.suspekt.org/2008/08/18/mysql-and-sqlicoh-truncation-vulnerabilities/

OWASP TOP 10- The top ten most critical WebAppSec vulnerabtitfor 2007:

http://www.owasp.org/images/e/e8/OWASP_Top_10_20df7.

APPENDIX D — PROFESSIONAL GROUPS
There are two web security organizations | reconingiu join, or at least become familiar with. OWASRI
WASC. Both offer tools and informative articles.
Open Web Application Security Project (OWASP)
http://www.owasp.org/
Consider joining a local chapter and joining thaagter's email list:

http://www.owasp.org/index.php/Category:OWASP_Chapt

Web Application Security Consortium (WASC)
http://www.webappsec.org/
WASC has a great email list that discusses WebAgpSg8ghly recommend it:

http://www.webappsec.org/lists/websecurity/

APPENDIX E — SECURITY BLOGS

A Day in the Life of an Information Security Investigator
http://it.toolbox.com/blogs/securitymonkey

Anachronic
http://www.anachronic.com/

Arbor Networks
http://asert.arbornetworks.com/

CERIAS Blog
http://www.cerias.purdue.edu/site/blog

cgisecurity
http://www.cgisecurity.com/

Chris Weber
http://lookout.net/

Dark Reading
http://www.darkreading.com/

Dark SEO Programming
http://www.darkseoprogramming.com/

Emerging Threats
http://www.emergingthreats.net/

Errata Security
http://erratasec.blogspot.com/

GNUCITIZEN
http://www.gnucitizen.org/blog/

Google Online Security Blog
http://googleonlinesecurity.blogspot.com/

ha.ckers
http://ha.ckers.org/blog/

HostExploit
http://hostexploit.blogspot.com/

HP Application Security Center Community
http://www.communities.hp.com/securitysoftware/tsbg

IBM Internet Security Systems
http://blogs.iss.net/

Jeremiah Grossman
http://jeremiahgrossman.blogspot.com/

Mantasano
http://www.matasano.com/log/

RISKS Digest
http://catless.ncl.ac.uk/Risks

Ronald van den Heetkamp
http://mww.0x000000.com/

root labs rdist
http://rdist.root.org/

Rootsecure.net
http://www.rootsecure.net/

Schneier on Security
http://www.schneier.com/blog/

Spamhaus(uses Lasso!)
http://www.spamhaus.org/newsindex.lasso

Stefan Esser
http://www.suspekt.org/

StopBadware.org
http://blog.stopbadware.org/

