
Creating Custom LDML Tags

Presented by:

Bil Corry

Lasso.Biz

Your life for the next 1.5 hours
Æ Who is that Bil guy with just one L?

Æ What are custom LDML tags?

Æ Why should you use custom LDML tags?

Æ When should you use custom LDML tags?

Æ How do you use custom LDML tags?

Æ How do you create custom LDML tags?

Æ How do you share custom LDML tags?

Æ Power of Custom LDML Tags: AutoValidate

Æ Q & A

Æ Autograph signing

You can ask questions at any time!

The Bil with one L
Æ Lasso developer since v2.0
Æ Website developer since

1995
Æ Pig out food is Pizza
Æ Member of Lasso Partner

Alliance
Æ LassoWare Solutions

Provider
Æ Degree in Computer

Science, Minor in Women’s
Studies

Æ Voted “Most Sexy” on
LassoTalk

The Bill with two Ls

Not me!

What are custom LDML tags?

ÆNew tags defined and created in LDML

ÆThey can be used just like any built-in
Lasso tag.

Æ If you can program in Lasso you can
extended its functionality!

ÆOther two ways to add new tags, LCAPI
and LJAPI (not covered today)

Why should you use custom
LDML tags? (i.e. why should you listen
to this presentation and not doze off?)

ÆCode abstraction

ÆCode re-use

ÆCode automation

Æ= LESS WORK MORE PLAY

Code abstraction

ÆTake complicated code and condense it
into a simple tag or group of tags

ÆExample: [Email_Send] is over 1100
lines of code to send email

ÆOther developers don’t need to know
how it works, just how to use it.

Code re-use
ÆWrite a thousand-line custom tag once and

re-use it infinitely
Æ Maintain the code in one location
Æ Debug once, use everywhere!

ÆWrite a thousand-line custom tag once and
re-use it infinitely

Æ Maintain the code in one location
Æ Debug once, use everywhere!

Code automation

ÆHave Lasso perform tasks so that you
don’t have to.

ÆLess mistakes, less coding, less
debugging

ÆWork smarter, not harder

ÆExample: AutoValidate

When should you use custom
LDML tags?

ÆNot an exact science!

ÆThings to consider:
ÆScope of the custom tag

ÆRedundancy of the custom tag

ÆPortability of the custom tag

Scope of the custom tag

ÆAvoid tags that do too much or too little

ÆExample: Too much = [myentirepage]

ÆExample: Too little = <[h][t][m][l]>

Redundancy of the custom tag

ÆCustom tags should reduce your coding
not duplicate existing tags

ÆExample: [todays_date] returns
date_getcurrentdate. Could just as
easily have done [date_getcurrentdate]

Portability of the custom tag

ÆCustom solutions that rely on custom
tags must be able to port easily. This
may be a problem when moving to a
shared hosting solution.

ÆKnow where and how your solutions will
be hosted.

How do you use custom
LDML tags?

ÆCustom tags are used identically as the
built-in tags, the only difference is you
must first define the custom tag before it
can be used.

ÆTo define a custom tag so that you can
use it, you must either define it at the
page level or define it globally.

Page-level Custom Tags

ÆPlace the [define_tag] code on the page
above where you are going to use the
custom tag.

ÆRequires that the custom tag be defined
on each page that it is used.

ÆWorks in shared environments where
you can’t add global custom tags

Global Custom Tags
Æ Place the [define_tag] code in its own .Lasso

file and place the file in the LassoStartup
folder. Restart LassoService to load.

Æ I use the naming convention TagName.Lasso
Æ The custom tag will be loaded at startup and

may be used on any page site-wide (just like
the built-in tags).

Æ You should debug as a page-level custom tag
first, otherwise every change to the tag will
require a LassoService restart.

ÆWill not work in shared environments if you
can’t add global custom tags

How do you create custom
LDML tags?
Æ Three types of custom LDML tags:

Æ Substitution
Æ [someTag] substitutes a value into page

Æ Container (LP6 Only)
Æ [someTag] … [/someTag]

Æ Types
Æ [var:’myVar’ = myCustomType]
Æ [$myVar->memberTag]

ÆWill be focusing on LP6, my paper focuses on
LP5

FYI: Naming Conventions
Æ Custom tags can be named with any

combination of letters, numbers and
underscores.

Æ Tags beginning with an underscore are
reserved for Blue World’s use.

Æ Blue World recommends naming custom tags
beginning with a short author identifier,
followed by an underscore, then the name of
the custom tag.
Æ Example: [bc_myCustomTag]

FYI: Variables vs. Locals

ÆAs you will see, any variables declared
within the custom tag becomes
available to the calling page

ÆUse locals for any values you don’t
want to pass back to the calling page or
any variables on the calling page you
don’t want to accidentally modify

FYI: Documentation within
tags
Æ Be careful to not do this (infinite loop):
[define_tag:’myTag’]

[myTag] version 1.0

[myTag] will return blah to user

[return:’blah’]

[/define_tag]

Æ Instead, use HTML comments or [noprocess]:
[define_tag:’myTag’]

<!-- [myTag] version 1.0

[myTag] will return blah to user -->

[return:’blah’]
[/define_tag]

Substitution Tags

ÆThree steps to success:
ÆGet the parameters that were passed in

ÆProcess

ÆPass the result(s) back out

ÆYour tag doesn’t have to receive
parameters or return results.

Passing parameters in

ÆTwo ways to pass parameters in:
ÆExplicitly when the tag is called

Æ [myTag: -someParam = ‘test123’]

Æ Implicitly using a variable
Æ [var:’someParam’ = ‘test123’]

Æ [myTag]

ÆOr you don’t have to pass a parameter
at all.

Passing the result(s) back out

Æ Three ways to pass the result(s) back out:
Æ Return a single value that is “substituted” into the

calling page (can be of type array or map for more
than one value)

Æ Return a variable or variables

Æ Return as if it was an [include] using
undocumented –autooutput (tricky advanced
feature)

Æ Or you don’t have to pass a result back at all.

Skeleton Substitution Tag

ÆThe absolute minimum for a custom
substitution tag:
Æ[define_tag:’myAlert’]

Æ[/define_tag]

ÆDoesn’t actually do anything, but would
be used like this:
Æ[myAlert]

Simple tag example
Æ No parameters passed in, no results passed

out:
Æ [define_tag:’myAlert’]
Æ [email_send:
Æ -host=’smtp.mindio.com’,
Æ -to=’bil@mindio.com’,
Æ -from=’lassoServer@mindio.com’,
Æ -subject=’myALERT!’,
Æ -body=’myAlert was triggered!’]
Æ [/define_tag]

Simple tag example cont

Æ Instead of this:
Æ [email_send:

Æ -host=’smtp.mindio.com’,

Æ -to=’bil@mindio.com’,

Æ -from=’lassoServer@mindio.com’,

Æ -subject=’myALERT!’,

Æ -body=’myAlert was triggered!’]

ÆWe now do this:
Æ [myAlert]

Passing a parameter into a
tag

ÆMethod #1: With explicit parameter
Æ[myAlert: ‘Jim is not wearing
the same shirt!‘]

ÆMethod #2: With implicit parameter
(variable)
Æ[var: ‘myAlert_AlertMessage’ =
‘Jim is not wearing the same
shirt!’]

Æ[myAlert]

Passing a parameter into a
tag cont

ÆMethod #1: With explicit parameter
Æ [define_tag:’myAlert’: -required=‘alert’]

Æ [email_send:

Æ -host=’smtp.mindio.com’,

Æ -to=’bil@mindio.com’,

Æ -from=’lassoServer@mindio.com’,

Æ -subject=’myALERT!’,

Æ -body=’myAlert was triggered! The alert
was ’ + #alert]

Æ [/define_tag]

Passing a parameter into a
tag cont
Æ Method #2: With implicit parameter

Æ [define_tag:’myAlert’]
Æ [email_send:
Æ -host=’smtp.mindio.com’,
Æ -to=’bil@mindio.com’,
Æ -from=’lassoServer@mindio.com’,
Æ -subject=’myALERT!’,
Æ -body=’myAlert was triggered! The
alert was ’ + $myAlert_alertMessage]

Æ [/define_tag]

More on explicit parameters
Æ Explicit parameters can be accessed easily

using –required or –optional
Æ Lasso will automatically create locals of your

–required or –optional parameters
Æ Lasso will throw an error if a –required

parameter is missing
Æ Lasso first matches all named parameters to

their –required and –optional, then matches
all unnamed parameters in order to the
specified –required then -optional

Example of –required and
 -optional
Æ [define_tag: ‘myAlert’, -required=‘name’,

-required=‘email’,

-optional=‘subject’]

Æ Will create two locals within the custom tag, #name and
#email, and possibly a third local, #subject.

Æ Optional parameters must be tested for:
Æ [if: !(local_defined:’subject’)]

Æ [local:’subject’=‘’]

Æ [/if]

Examples of how Lasso assigns
–required and -optional
Æ [define_tag: ‘myAlert’,-required=‘name’,

-required=‘email’,

-optional=‘subject’]

Æ Will Work:
Æ [myAlert: ‘Bil Corry’,’bil@bilcorry.com’]

Æ [myAlert:

‘Bil Corry’,’bil@bilcorry.com’,’test’]

Æ [myAlert: -name=‘Bil Corry’,

-email=’bil@bilcorry.com’,-subject=‘test’]

Æ [myAlert: -email=’bil@bilcorry.com’,’Bil Corry’]

Æ Won’t Work:
Æ [myAlert: -email=’bil@bilcorry.com’,’test’,’Bil

Corry’]

Recap

Æ So far we now know how to create a basic
substitution tag and how to pass parameters
into it. Remember, there are three types of
tags: substitution, container and type. Right
now we’re only looking at substitution.

Æ Now we’re going to focus on how to get the
results back out of custom substitution tags.

Passing the result(s) back out

Æ Three ways to pass the result(s) back out:
Æ Return a single value that is “substituted” into the

calling page (can be of type array or map for more
than one value)

Æ Return a variable or variables

Æ Return as if it was an [include] using
undocumented –autooutput (tricky advanced
feature)

Æ Or you don’t have to pass a result back at all.

[Return] Single Value

Æ [return] is entirely straightforward, simply call
[return] from within a custom tag to
immediately abort the tag and return a value

Æ [return: 15] returns the integer 15

Æ [return: ‘doghouse’] returns the string ‘doghouse’

Æ [return: (array: 15,’doghouse’)] returns an array
containing 15 and ‘doghouse’

[Return] Example

Æ A tag defined as this:
[define_tag:’html’]

[return:’html’]

[/define_tag]

Æ Can be called like this:
<[html]>

Æ And becomes this:
<html>

Passing Results Using a
Variable

ÆVery easy for beginners since similar to
how you construct a Lasso page

ÆCan pass as many variables as needed

ÆHarder to use in a multi-developer
environment, not self-contained

Variable Example

Æ A tag defined as this:
[define_tag:’html’]

[var:’html’=‘html’]

[/define_tag]

Æ Can be called like this:
[html]<[$html]>

Æ And becomes this:
<html>

Passing Results Using
 -AutoOutput

ÆCustom tags, just like built-in tags, are
automatically HTML encoded unless
another encoding scheme is defined.

Æ -AutoOutput allows you to override the
auto HTML encoding.

Æ It’s undocumented, so it may stop
working in future versions of Lasso, but
it does work in LP5 and LP6.

Encoding Problem Example

Æ A tag defined as this:
[define_tag:’html’]

[return:’<html>’]

[/define_tag]

Æ Can be called like this:
[html]

Æ And becomes this:
<html>

Æ Instead of this:
<html>

Two solutions:

ÆCall the tag like this:
[html: -encodenone]

And becomes this:
<html>

ÆUse -AutoOutput

-AutoOutput

ÆA tag defined as this:
[define_tag:’html’,-AutoOutput]

<html>[/define_tag]

ÆCan be called like this:
[html]

ÆAnd becomes this:
<html>

-AutoOutput Gotchas

ÆCan’t use [return] inside of a custom tag
that uses –AutoOutput

ÆEvery whitespace (returns, spaces, tabs)
and any HTML comments will be
passed back to the calling page –
everything between [define_tag] and
[/define_tag]

Advance topics to explore
Æ [Precondition]

Æ Execute code before the tag

Æ [Postcondition]
Æ Execute code after the tag

Æ -Priority
Æ Sets up a chain of tags or optionally replaces tags

Æ -Criteria
Æ Specify a condition to be met, if fails, next tag in

chain is called

Æ -Async
Æ Run the tag asynchronously

Recap: How do you create
custom LDML tags?

ÆThree types of custom LDML tags:
ÆSubstitution

Æ [someTag] substitutes a value into page

ÆContainer (LP6 Only)
Æ [someTag] … [/someTag]

ÆTypes
Æ [var:’myVar’ = myCustomType]

Æ [$myVar->memberTag]

Container tags

ÆAllow you to create tags using an
opening and closing tag.

ÆLP6 only

ÆExample:
[url]www.lasso.biz[/url]

ÆBecomes:
www.lasso.biz

Container Tags Cont

Æ By default, no encoding is performed on
container tags (similar to substitution tags
specifying –AutoOutput)

Æ Use –container to specify it’s a container tag

Æ Lasso will require a closing tag

Æ [run_children] will return everything between
your opening and closing tags, think of it as
an include

Container Tags: Example
[url]www.somesite.com[/url]

Æ Define the tag like this:
[define_tag:’url’,-container]

[return:’’ +
run_children + ’’]

[/define_tag]

Æ Using it like this:
[url]www.lasso.biz[/url]

Æ Becomes:
www.lasso.biz

Advance topics to explore

ÆSub-container tags, like [loop_count]

Custom types

ÆAllows Lasso to store and manipulate
objects using member tags.

ÆProbably the toughest to understand
and code for (at least it was for me).

Æ It is created by defining the type, then
the member tags.

Skeleton custom type
[define_type:’myType’]

[define_tag:’memberTag’]

[/define_tag]

[define_tag:’anotherMemberTag’]

[/define_tag]

[/define_type]

Æ To use the above:
[var:’test’=(myType)]

[$test->memberTag]
[$test->anotherMemberTag]

Example
[define_type:’customer’]
[local:’name’=‘’]
[local:’email’=‘’]
[define_tag:’setName’,-require=‘name’]

[self->’name’=#name]
[/define_tag]
[define_tag:’getName’]

[return: self->’name’]
[/define_tag]

[/define_type]

Example cont

ÆTo use the custom tag:
[var:’test’=(customer)]

[$test->setName:’Bil’]

[$test->getName]

ÆOutputs
Bil

Important things to know

Æ [self->’localVar’] refers to the local
variable ‘localVar’ for that instance of
the type

ÆThe local variables are persistent for the
life of the variable.

Custom types allow for slick
data abstraction

ÆUsing custom types, you can then have
the custom type do your database
queries, abstracting it from the Lasso
page.

ÆMakes it easier to employ non-technical
developers who perhaps don’t know
anything about databases

Example of data abstraction
[var:’user’ =(userType)]

[while: !$user->auth]

[auth]

[$user->setUsername: (client_username)]

[$user->setPassword: (client_password)]

<!–- authenticate user, make DB call to lookup user
info -->

[$user->authenticate]

[/while]

Welcome [$user->getName]!

You have [$user->getCredit] credits left to spend.

Advance topics to explore

ÆThere’s a lot more you can do with
Custom Types.

Æ I’d recommend reading the entire
chapter on Custom Types in the
Extending Lasso Guide.

How do you share custom
LDML tags?

ÆBlue World maintains a directory of
resources here:
http://www.blueworld.com/blueworl
d/products/lassosolutions.html

ÆTwo popular sites: LassoScripts.com
and LassoTracker.com

ÆYou can announce on LassoTalk

The power of custom LDML
tags: AutoValidate

ÆAutoValidate is a two-tag custom LDML
system for validating HTML forms,
AutoValidate_Encode and
AutoValidate_Decode

ÆLasso does all the work so that you
don’t have to.

ÆGreat example of a RAD tool.

How it works
Æ You create a HTML form with the field names

crafted with how you want it validated.
Æ AutoValidate_Encode processes the forms

before sending it on to the user, changing the
field names to their “normal” name and
inserts an encrypted hidden HTML field
containing all the validation information.

Æ On the response page, AutoValidate_Decode
decrypts the hidden field, validates all the
fields and alerts you to any validation errors.

An example of the form
Æ The developer codes the page like this:

[handle]

[autoValidate_encode]

[/handle]

<form ...>
<input type="text”
name="vf.username.an.req.len<=24">
<input type="text“
name="vf.password.req.len>=6.len<=12.an.nospc">
<input type="hidden" name="region“
value="northwest">

</form>

An example of the form

Æ The user sees the page like this:

<form ...>

<input type="hidden" name="vfdata"

value="DAFD...blowfish encrypted text...4A4D">

<input type="text” name=“username">

<input type="text“ name="password">

<input type="hidden" name="region“
value="northwest">

</form>

An example of the response

ÆThe response page looks like:

[AutoValidate_Decode]

[if: $vferrmsg->size > 0]

<p class="mystyle">[$vferrmsg]</p>

[else]

No Errors

[/if]

An example of the response

ÆThe response page to the user looks
like:

The field User Name cannot be empty.
The field Password must be at least 6 characters long.
The field Password must be comprised of only alphanumeric characters
(a...z, A...Z, 0...9).

Other features
Æ Support for user-entered dates, such as 1-30-

2003 or 1/30/2003, and Euro dates such as
30-1-2003 or 30/1/2003

Æ Auto encrypt all hidden fields
Æ Support for custom validation
Æ Support for “friendly names” for the user

instead of field names (such as “First Name”
instead of “name_first”)

Æ Many other features
Æ All done with custom LDML tags!
Æ Beta version available here:

www.lassoware.com

Thank You!

Æ Questions and Answers

Æ Autographs and Pictures

Bil Corry

bil@lasso.biz

A copy of this presentation will be made
available at: www.lasso.biz

