
blueworld

blueworld

Advanced
Developer

Techniques

blueworld

Introduction
Speakers

• Fletcher Sandbeck
Lasso Product Specialist

• Kyle Jessup
Lead Engineer

blueworld

Introduction
Topics

• Compound Expressions

• Logging Controls

• Global Variables and References

• Map Tags

• Symbol Overloading

• Unknown Tags

• Lasso Developer 6 Technology Preview

blueworld

Introduction
Goals

• Demonstrate New Features of Lasso Professional 6.

• Code maintenance and debugging techniques.

• Reduce memory use and execution time.

• Create professional quality tags and data types.

• Demonstrate new features of Lasso Developer 6.

blueworld

Compound Expressions
Goals

• Allow complex expressions to be embedded
within tag calls.

 [Var: 'result' = [If: $condition]Alpha[Else]Beta[/If]]

• Allow developers to easily reuse code.

• Make tags a first class data type so they can be
passed as parameters.

 [exArray: $array, [tag]]

• Easy execution of asynchronous processes.

blueworld

Compound Expressions
Characteristics

• Delimited by curly brackets { }.

 { Compound Expression }

• LassoScript syntax, tags separated by ;.

 { (Tag: parameters); (Tag: parameters); }

• Specify return value using [Return] tag.

 { Return: 'Value'; }

• Evaluate compound expressions using [{}->Eval].

 [{ Compound Expression }->Eval]

blueworld

Compound Expressions
Embedded Expressions

• Goal – Allow complex expressions to be embedded
within tag calls.

• Example – Using an [If] … [Else] … [/If] expression
as a parameter.

 [Var: ‘test’ = { If: ($condition == Null);
 Return: '';
 Else;
 Return: $condition;
 /If; }->Eval]

blueworld

Compound Expressions
Examples

 [Field: { If: ($fieldname == Null); Return: 'ID';
 Else; Return: $fieldname ; /If; }->Eval]

 [Var: 'myArray' = { If: ($variable->type != 'array');
 Return: (Array: $variable); Else;
 Return: $variable; /If; }->Eval]

 [Var: 'found_count' = { Inline: -FindAll,
 -Database='Contacts', -Table='People' ;
 Return: (Found_Count);
 /Inline; }]

blueworld

Compound Expressions
Reusable Expressions

• Goal – Allow developers to easily reuse code.

• Custom Tags allow code to be reused:

 [Define_Tag: 'myTest', -Required='condition']
 [If: #condtion == Null]
 [Return: '']
 [Else]
 [Return: #condition]
 [/If]
[/Define_Tag]

 [Var: 'result' = (myTest: $condition)]
[Var: 'result2' = (myTest: $condition2)]

blueworld

Compound Expressions
Reusable Code

• Compound expressions can be stored in a variable
and run as a tag using [{}->Run].

 [Var: 'myTest' = { If: #condtion == Null; Return: '';
 Else; Return: #condition; /If; }]

 [Var: 'result' = $myTest->(Run: -Params=$condition)]
[Var: 'result2'=$myTest->(Run: -Params=$condition2)]

 Pro – This requires less code than creating a tag for
small code snippets.

 Con – Requires use of the [{}->Run] tag.

blueworld

Compound Expressions
Reusable Code

• Goal – Make tags a first class data type.

 Allow tags to be created, renamed, and replaced
programmatically.

• [Tags] is a map of tag names and code.

• Compound expressions can be installed into the
[Tags] map and then called as custom tags.

blueworld

Compound Expressions
Reusable Code

• Compound expressions can be stored in the [Tags]
map and then called as a custom tag.

 [Var: 'myTest' = { If: #condtion == Null; Return: '';
 Else; Return: #condition; /If; }]
[Tags->(Insert: 'myTest' = $myTest)]

 [Var: 'result' = (myTest: $condition)]
[Var: 'result2'=(myTest: $condition2)]

 A custom tag created in this way is no different
than a custom tag created using the [Define_Tag]
… [/Define_Tag] tags.

blueworld

Compound Expressions
Expression Parameters

• Goal – Make tags a first class data type so they can
be passed as parameters.

• Compound expressions can be stored in variables.

• Compound expressions can be passed as param-
eters.

• Create a custom tag which accepts a compound
expression as a parameter and applies that expres-
sion to each element of an array.

 [exArray: (Array: 1, 2, 3, 4, 5),
 { Return: (Params)->(Get:1) • 2; }]

➜ (Array: 2, 4, 6, 8, 10)

blueworld

Compound Expressions
Expression Parameters

• The [exArray] tag takes two required parameters:
an array and a compound expression.

• The expressions is applied to each element of the
array in turn.

• The resulting value is stored back in the array.

 [Define_Tag: 'exArray', -Required='array',
 -Required='expression']
 [Iterate: #array, (Local: 'item')]
 [#item = #expression->(Run: -Params=#item)]
 [/Iterate]
[/Define_Tag]

blueworld

Compound Expressions
Asynchronous Operations

• Goal – Easy execution of asynchronous code.

• This is a replacement for the [Post_Inline] func-
tionality from Lasso WDE 3.x, but is more reliable
and flexible.

• Use [{ }->AsAsync] to execut code asynchronously.

• The [Sleep] tag can be used to delay execution a
number of milliseconds.

 <?LassoScript
 { Sleep: 1000;
 Log_Critical: 'Executing one second later'; }->AsAsync;
?>

blueworld

Logging Controls
Introduction

• Lasso Professional 6 introduces three log levels
and destinations.

• Error messages can be flagged according to their
importance.

• The global administrator can decide what error
messages they want to see in each of three
destinations.

• More information can be viewed while debugging.
Then, only important errors can be viewed once a
site goes live.

blueworld

Logging Controls
Log Levels

• Critical – Issues which must be brought to the at-
tention of the global administrator. These issues
affect the proper operation of Lasso Service.

• Warning – Issues that provide information about
the state of Lasso Service or which may point to an
error on a particular page, but not a system-wide
error.

• Detail – Detailed messages about the proper op-
eration of a server. Debugging messages.

blueworld

Logging Controls
Example

• All SQL statements issued are logged as Detail
messages.

• Invalid SQL statements are logged as Warning
messages.

• If Lasso MySQL is not available then an Error mes-
sage is logged.

blueworld

Logging Controls
Log Destinations

• File – The LassoErrors.txt file in the same folder as
Lasso Service.

 tail -f LassoErrors.txt

• Console – The Lasso Service console.

 consoleLassoService.command
LassoService.exe

• Database – View in the monitor section of Lasso
Administration.

blueworld

Logging Controls
Setting Destinations

• Change the destination using the monitor section
of Lasso Administration or using [Log_SetDestina-
tion].

• Routing can be changed on the fly depending on
what information you need immediately.

• All messages can be routed to database for remote
debugging.

• LassoErrors.txt can be watched without restarting
Lasso Service to view the console.

blueworld

Logging Controls
Log Tags

• Log different error levels using:

 [Log_Critical: 'Critical Error Message']

 [Log_Warning: 'Warning Message']

 [Log_Detail: 'Detail Message']

• Note difference from traditional log tags.

 [Log: -Window] Message for Console [/Log]

• The advantage of the new tags is they can be eas-
ily used in custom tags and LassoScripts.

• The old [Log] … [/Log] tags are still required to log
to files.

blueworld

Logging Controls
Summary

• New log tags in Lasso Professional 6 can be used
to set the level of error messages.

• Error messages at each level can be routed to
three destinations: database, file, or Lasso Service
console.

• Professional solutions should make use of all three
error levels to provide the best end-user experi-
ence possible.

blueworld

Global Variables
& References

Goals

• Allow data to be shared between pages.

• Prevent duplication of data on a page.

• Allow easier manipulation of complex data types.

• Improve performance.

• Decrease memory footprint.

• Allow developers to create professional solutions.

blueworld

Global Variables
Introduction

• Lasso Professional 6 has new tags which makes
creating server-wide global variables easy.

• Create a new global:

 [Global: 'myGlobal'='my value']

• Access the global (on same page or any other):

 [Global: ‘myGlobal’]

• Check whether a global has been defined:

 [Global_Defined: 'myGlobal']

• Map of all globals:

 [Globals]

blueworld

Global Variables
Examples

• Storing server-wide preferences.

• Create your own session system.

• Control access to shared resources (Thread Tools).

 [Semaphore] [RWLock] [Lock]

• Sending data between threads.

 [Event] [Pipe]

• Caching page contents.

blueworld

Global Variables
Notes

• Any variables created within Lasso Startup are
global variables.

• Use the following to ‘hide’ variables within Lasso
Startup.

 { Local: 'myLocal'='my value'; }->Run;

• [Global] and [Global_Defined] are custom
tags whose source code can be found in
Startup.LassoApp.

blueworld

References
Example

• Create variables Alpha and Beta.

 [Var: ‘Alpha’ = ‘my value’]
[Var: ‘Beta’ = $Alpha]

• Print out the values of Alpha and Beta

 Alpha - my value
Beta - my value

• Change the value of Alpha

 [Var: ‘Alpha’ = ‘my new value’]

• Print out the values of Alpha and Beta

 Alpha - my new value
Beta - my value

blueworld

References
Example

• Create variable Alpha and set Beta to a reference.

 [Var: ‘Alpha’ = ‘my value’]
[Var: ‘Beta’ = (Reference: $Alpha)]

• Print out the values of Alpha and Beta.

 Alpha - my value
Beta - my value

• Change the value of Alpha.

 [Var: ‘Alpha’ = ‘my new value’]

• Print out the values of Alpha and Beta.

 Alpha - my new value
Beta - my new value

blueworld

References
Notes

• References allow two variables to point at the
same underlying data object.

• Developers can decide what data needs to be cop-
ied and what data can be shared.

• Particularly useful when working with arrays and
maps since a reference to either an entire complex
data object or just one element can be created.

• Often used in custom tags and with global shared
values.

blueworld

References
Example

• The [Iterate] ... [/Iterate] tag in LP6 sets a variable
to the value of each element of a complex data
type in turn.

 [Var: ‘myArray’ = (Array: ‘Red’, ‘Blue’, ‘Green’)]
[Iterate: $myArray: (Var: ‘item’)]
 [$item->(Lowercase)]
[/Iterate]
[Output: $myArray]

➜ red, blue, green

• Note – The array elements are not duplicated.
Each is modified in place. This takes about half the
memory of creating the elements in a new array.

blueworld

Caching Example
Introduction

• This is an example of using references and server-
wide global variables.

• Source code is in the conference manual or on the
CD.

• Goal – To cache a portion of a page and only re-
fresh it periodically.

 [exCache: -Name=’myCache’, -Expires=3600]
 ... contents ...
[/exCache]

• The contents of the tags will be cached. Each time
the page is loaded the time stamp of the conents is
checked and either the cached content is served or
new contents is created.

blueworld

Caching Example
Road Map

The code for the tag is split into four parts:

1 Create a custom container tags

2 Creating the server-wide global variable to store
the cache

3 Fetch the named item from the global cache and
check the expiration date/time

4 Serving the cached data or generating new data

blueworld

Caching Example
Step 1

Create a custom container tag.

 [Define_Tag: ‘exCache’, -Container, -Required=’Name’,
 -Optional=’Expires’]
 ...
[/Define_Tag]

• [Local: ‘Name’] contains the value of the -Name
parameter automatically.

• [Local: ‘Expires’] contains the value of the optional
-Expires parameter if it is specified.

• [Run_Children] will return the processed value of
the contents of the container tags.

blueworld

Caching Example
Step 2

Create the server-wide global variable using the
[Global_Defined] and [Global] tags.

 [If: !(Global_Defined: ‘Ex_Cache_Storage’)]
 [Global: ‘Ex_Cache_Storage’ = (Map)]
[/If]

• Store a local reference to the global variable for
our convenience.

 [Local: ‘storage’ = @(Global: ‘Ex_Cache_Storage’)]

• Now we can reference our global variable as #stor-
age rather than as (Global: ‘Ex_Cache_Storage’).

blueworld

Caching Example
Step 3

Fetch the named item from the global cache.

 [Local: ‘cache’ = @(#storage->(Find: #name))]

• This references an element of the global variable
by reference. Any changes made to the reference
will be reflected in the global variable automati-
cally.

• Date tags are used to check whether the stored
date of the last cached content is greater than the
expiration time in seconds.

blueworld

Caching Example
Step 4

Serving new or cached data

• New data is served by calling [Run_Children] to
execute the contents of the container tags. The
generated data is stored in the cache using

 [#cache->(insert: ‘contents’ = (run_children))]

• Note that this goes all the way into the global
cache through the references.

• Cached data is served by returning the value of the
following:

 [#cache->(find: ‘contents’)]

blueworld

Caching Example
Examples

• Fetch Apple’s stock price once an hour.

 [exCache: -Name=’stockdisplay’, -Expires=3600]
 Apple’s stock price: [Stock_Quote: ‘AAPL’] as of [Date].
[/exCache]

• Refresh a list once a day from a database.

 [exCache: -Name=’soupsoftheday’, -Expires=(3600 • 24)]
 [Inline: -Search, -Database=’Soups’, -Table=’Schedule’,
 ‘Soup_Date’=Date->(Format: %Q)]
 [Records]

[Loop_Count]: [Field: ‘Soup_Name’]
 [/Records]
 [/Inline]
[/exCache]

blueworld

Global Variables
& References

Summary

• Global variables are a tool for sharing data be-
tween Web pages on the same server.

• References are a tool for sharing data between
variables on a single page.

• Both can be used by developers to decrease execu-
tion time and memory usage.

• Globals can be set and retrieved just like variables
using the [Global] tags in LP6.

• References are automatically used by the [Iterate]
... [/Iterate] tags.

blueworld

Map Tags
Useful Techniques

• Two new map tags in Lasso Professional 6 are very
useful for debugging maps.

• The following tag returns a list of all the keys
stored in a map:

 [Map->Keys]

• The following tag returns an array of all the value
stored in a map:

 [Map->Values]

blueworld

Map Tags
Useful Techniques

• These tags can be used on the [Locals], [Variables],
or [Globals] maps to provide a list of all defined
variables.

• List all global variables using:

 [Globals->Keys]

• List all page variables using:

 [Variables->Keys]

• List all local variables within a custom tag using:

 [Locals->Keys]

blueworld

Data Types
Symbol Overloading

& Unknown Tags

• Lasso Professional 6 provides new tools for creat-
ing professional quality data types.

• Symbol overloading allows the + - • / % symbols to
be customized.

• Unknown tag processing allows tags with any
name to be processed for a particular data type.

• Data types created using these tools can have the
full functionality of built-in data types.

• Source code for these examples are in the summit
manual or on the CD.

blueworld

Symbol Overloading
Example

• Create a mathematical vector data type that stores
ordered sequences of numbers.

 [Var: ‘myVector’ = (exVector: 1, 2, 3, 4, 5)]

• Allow the built-in math symbols to manipulate
vectors.

 [Output: $myVector • 2]

➜ (exVector: 2, 4, 6, 8, 10)

blueworld

Symbol Overloading
Road Map

• Define a custom tag within the definition of the
data type with the name +.

 [Define_Tag: ‘+’] … [/Define_Tag]

• This custom tag is called when a + expression is
evaluated with an [exVector] on the left.

 [Output: (exVector: ...) + 4]

• Need to handle addition of another [exVector] or
addition of a literal value.

blueworld

Symbol Overloading
+ Symbol

 [Define_Tag: ‘+’, -Required=’item’]
 [Local: ‘result’ = (exVector)]
 [If: (#item->type == self->type)]
 [loop: self->size]
 [#result->(insert: self->(get: loop_count) +
 #item->(get: loop_count))]
 [/Loop]
 [Else]
 [Loop: self->size]
 [#result->(insert: self->(get: loop_count) + #item]
 [/Loop]
 [/If]
 [Return: #result]
[/define_tag]

blueworld

Symbol Overloading
Possibilities

• The + - • / % >> and += -= •= %= symbols can all be
overloaded.

• The == != < > symbols can all be overloaded using
the onCompare callback tag.

• The = symbol can be overloaded using the onAs-
sign callback tag.

• Consult the Extending Lasso 6 Guide for more
information.

blueworld

Unknown Tags
Example

• Create a tag that returns the hexadecimal value for
any standard HTML color.

 [exColor->Red] -> #ff0000
[exColor->AntiqueWhite] -> #FAEBD7

• This data type will have well over a hundred cus-
tom tags and it is laborious to create them all.

• Use the _UnknownTag callback tag to define all
the custom tags at once.

blueworld

Unknown Tags
Road Map

• Define a custom tag within the definition of the
data type with the name _unknowntag.

• The [Tag_Name] tag allows the name of the tag
which is being executed to be retrieved.

• Within the custom tag find the value for a color
from a map of all the standard HTML colors.

 [Global: 'excolor_colors' = (Map: 'white'='#ffffff',
 'red'='#ff0000', 'green'='#00ff00', 'blue'='#0000ff', …)]

 [Define_Tag: ‘_unknowntag’]
 [Return: (Global: ‘excolor_colors’)->(find: tag_name)]
[/Define_Tag]

blueworld

Unknown Tags
Examples

• Allow data types to be created which support tags
whose names are not known at compile time.

• A type could call introspection methods on an
XML-RPC server and provide tags for all available
remote methods.

• A type could store values by key and allow values
to be retrieved using [$Variable->KeyName].

• A type can provide intelligent error messages
when an unknown tag is called.

blueworld

Lasso
Developer

blueworld

Lasso Developer
Goals

• Allow developers to inspect values in a page while
it is running.

• Provide an easy but powerful way to determine
what pages to debug.

• Provide feedback about the structure of code
which Lasso has parsed.

• Provide a quick way for developers to test code
snippets.

• Provide a common interface on Mac OS X / Win-
dows

blueworld

Lasso Developer
Quick Script Window

• Write code snippets and get instant results.

• Use any LDML code including [Inline] ... [/Inline]
tags, [Include_URL], etc.

• Store common code snippets for fast retrieval.

• Enhances developer experience by making it easy
to test code without placing it in a page.

• Provides instant feedback, allows debugger to be
triggered to test custom tags.

blueworld

Lasso Developer
Break Points

• Specify what pages should activate the debugger.

• Uses simple pattern expressions to select multiple
pages:

 *.lasso

 /includes/*.lasso

• Can select format files loaded in the browser or
included files.

• Allows the set of pages which are being debugged
to be focused or widened as needed.

blueworld

Lasso Developer
Debugger

• Provides outline view of parsed Lasso code.

• Allows the developer to visually spot errors in tag
nesting, logic errors.

• Step command allows LDML statements to be ex-
ecuted one by one.

• Step In command allows custom tags and included
files to be stepped into.

• Step Out command triggers execution until the
end of the current custom tag or included file.

• Continue command allows execution until the next
break point.

blueworld

Lasso Developer
Debugger

• Source code view allows the parsed outline view
to be correlated with the source code from the as-
sociated format file.

• Expressions allow code to be executed each time
an execution step is performed.

• Variables can be watched.

• Tags such as [Error_CurrentError], [Found_Count],
[Shown_Count] can be executed.

blueworld

Lasso Developer
LassoApps

• The code for pages from compiled LassoApps
or for custom tags defined within compiled Las-
soApps cannot be debugged.

• This prevents other developers from reverse engi-
neering compiled LassoApps.

blueworld

Lasso Developer
Road Map

• Now – Technology preview at Lasso Summit.

• Beta – For LPA members by the end of the year.

• Release – Early next year.

blueworld

Lasso Developer
Technology

Preview

blueworld

Questions
&

Answers

blueworld

blueworld

