

	 •	LDMLReference.LassoApp – The Lasso Reference is the definitive source for information about each tag
in Lasso Dynamic Markup Language. This LassoApp is pre-installed in the LassoApps folder within the Lasso
Professional 8 application folder.

	 •	RPC.LassoApp – This LassoApp responds to incoming remote procedure calls using the XML-RPC format.
This LassoApp is pre-installed in the LassoApps folder within the Lasso Professional 8 application folder.

	 •	Startup.LassoApp – This LassoApp defines custom tags and performs initialization for Lasso Security, the
email sender, and the event queue. This LassoApp is installed in the LassoStartup folder and must be present
for Lasso Service to start.

The code for each of these LassoApps can be found within the Documentation Folder > 2 - Language Guide
> LassoApps folder. This code is provided as-is without any warranty or support.

Warning: Do not compile LassoApps with the same name as the LassoSoft supplied LassoApps (e .g .
Startup.LassoApp or SiteAdmin.LassoApp) . LassoSoft cannot provide any support for customized versions of these
LassoApps or for Lasso Professional 8 installations which make use of customized versions of these LassoApps .

Administration
This section discusses how to enable or disable LassoApp support and how administer the LassoApp cache
using Lasso tags and within Lasso Site Administration.

Enabling LassoApp Support
Lasso Site Administration includes a global setting to enable or disable LassoApp support. This setting can be
found in the Setup > Global Settings > LassoApps section of Lasso Site Administration.

When LassoApp support is disabled only the LassoApps which ship with Lasso Professional 8 can be
served (including Admin.LassoApp, GroupAdmin.LassoApp, LDMLReference.LassoApp, and Startup.LassoApp in the
LassoStartup folder.

Please see the Site Utilities chapter of the Lasso Professional 8 Setup Guide for more information about
enabling or disabling LassoApp support.

LassoApp Cache
LassoApps are cached in RAM for efficient serving. Each LassoApp only needs to be read from disk once and
from then on is served from high-speed memory. LassoApps are read from disk automatically the first time
they are called so there is no need to pre-load them (unless the fastest performance is required on the first
load).

Since LassoApps are only read from disk the first time they are called it is necessary to ask Lasso to dump any
LassoApps that need to be re-read from disk. For example, this is necessary if a new version of a LassoApp is
copied into the Web serving folder.

LassoApps can be removed from the cache using the Cache page in the Setup > Global Settings >
LassoApps section of Lasso Site Administration. See the Site Utilities chapter of the Lasso Professional 8
Setup Guide for more information. LassoApps can also be removed from the cache programatically using the
following steps.

To remove a LassoApp from the cache:

Use the [LassoApp_Dump] tag with the name of the LassoApp. The following example shows how to remove a
LassoApp named MySolution.LassoApp from the cache. The LassoApp will be read from disk the next time the
LassoApp is called.

[LassoApp_Dump: 'MySolution.LassoApp']

6 7 4

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 6 – L a s s o a p p s

To remove all LassoApps from the cache:

Use the [LassoApp_Dump] tag without any parameters The following example shows how to remove all
LassoApps from the cache. Each LassoApp will be read from disk the next time it is called.

[LassoApp_Dump]

To preload a LassoApp into the cache:

LassoApps can be preloaded into the cache by calling them from a Web browser or by using the [Include_URL]
tag. The following example shows how to preload a LassoApp named MySolution.LassoApp using [Include_URL].

[Include_URL: 'http://www.example.com/Lasso/MySolution.LassoApp']

If a LassoApp will be used frequently on the server it can be preloaded using the [Event_Schedule] tag in a Lasso
page in LassoStartup. The following code would preload a LassoApp named MySolution.LassoApp five minutes
after Lasso Service is started. The delay is specified so the other initialization steps have a chance to complete
before the LassoApp is loaded.

[Event_Schedule: -URL='http://www.example.com/MySolution.LassoApp',
 -Delay=5]

Serving LassoApps
LassoApps can be served the same way as Lasso pages. They can be served from the Web server root or the
LassoApps folder in the Lasso Professional 8 application folder, included in other Lasso pages, or placed in the
LassoStartup folder and executed at startup. This section includes information about how to use LassoApps in
each of these situations.

Web Serving Folder
LassoApps which are placed in the Web serving folder are served like any Lasso-based Lasso pages. When they
are referenced by name in HTML anchor tags, HTML form actions, [Include] or [Library] tags, or as the target of a
-Response… tag. The entry page for the LassoApp is always the page that is served.

Since LassoApps are cached, only one copy of each named LassoApp can be served from a single site in Lasso
Professional 8. If a second LassoApp with the same name is called the cached copy of the first LassoApp will
be served in its place. It is important to ensure that multiple copies of the same LassoApp are identical or
unexpected results can occur.

LassoApps Folder
LassoApps which are placed in the LassoApps folder in the Lasso Professional 8 application folder are served
when they are referenced by name in HTML anchor tags, HTML form actions, [Include] or [Library] tags, or as the
target of a -Response… tag. The entry page for the LassoApp is always the page that is served.

Since LassoApps are cached, only one copy of each named LassoApp can be served from a single site in Lasso
Professional 8. If a second LassoApp with the same name is called the cached copy of the first LassoApp will
be served in its place. It is important to ensure that multiple copies of the same LassoApp are identical or
unexpected results can occur.

LassoApp Links
The links in the entry page must be marked with the [LassoApp_Link] tag in order to reference other files
contained within the LassoApp. See the section on Preparing Solutions for more details.

The [LassoApp_Link] tag modifies internal links to be of the form LassoAppName.FileNumber.LassoApp. For example,
the link to the entry page of a LassoApp named MySolution.LassoApp would be formated as follows in the
source of the LassoApp.

 Entry Page

6 7 5

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 6 – L a s s o a p p s

After the LassoApp is compiled, this link will be changed to the following code. The number referenced in the
link is determined when the LassoApp is compiled. This number should not be relied on since it may change
if the LassoApp is recompiled.

 Entry Page

The conversion of links marked [LassoApp_Link] is handled automatically. No further action beyond marking
internal links with the [LassoApp_Link] tag is required. The site visitor will be able to visit any pages which can
be reached from the entry page within the LassoApp and will be able to view any linked images within the
LassoApp.

To reference pages in a LassoApp from outside the LassoApp:

Individual pages within a LassoApp can be referenced using the -ResponseLassoApp tag as a parameter to the
LassoApp name. For example, the entry page (e.g. default.lasso) of the MySolution.LassoApp LassoApp could be
referenced explicitly using the following link.

 Entry Page

The path specified for the -ResponseLassoApp tag should be relative to the folder which was compiled into
the LassoApp. The -ResponseLassoApp tag should not be used as part of a database action or to specify the
response file for a database action. It should only be used to return a specific Lasso page or image file from
within a LassoApp.

Note: By using this technique, even files and images within a LassoApp which cannot be reached from the entry
page can be viewed if the visitor knows the path to the file they want to view within the LassoApp .

Database Action Responses
The entry page of a LassoApp can be used as the response to a database action by specifying the path to the
LassoApp as the parameter for any of the -Response… command tags. The following form returns the entry file
of MySolution.LassoApp as the response to a -FindAll action.

<form action="Action.Lasso" method="POST">
 <input type="hidden" name="-FindAll" value="">
 <input type="hidden" name="-Database" value="Contacts">
 <input type="hidden" name="-Table" value="People">
 <input type="hidden" name="-Response" value="MySolution.LassoApp">
 <input type="submit" name="-FindAll" value="Find All People">
</form>

Note: The -ResponseLassoApp tag cannot be used in conjunction with a database action to return a particular page
from within a LassoApp . Only the entry page of a LassoApp can be returned as the result of a database action .

Lasso Libraries Folder
A LassoApp can define a set of custom tags which are all in the same namespace for on-demand loading.
The LassoApp should be named with the same name as the namespace of the tags. For example, a LassoApp
named Example.LassoApp could define a set of custom tags in the Example_ namespace [Example_TagOne],
[Example_TagTwo], etc.

When Lasso is asked to execute a tag that has not yet been defined it checks in the LassoLibraries folder for a
tag library with the name of the namespace of the desired tag. The entry page of a matching LassoApp will be
loaded defining all of the tags within.

Note: All of the tags must be defined within the entry page of the LassoApp .

6 7 6

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 6 – L a s s o a p p s

Lasso Startup Folder
The entry page of a LassoApp can be executed when Lasso Service starts up by placing the LassoApp file
within the LassoStartup folder inside the Lasso Professional 8 application folder. The entry file can include
as many other files within the LassoApp as it needs in order to perform the desired actions. For example,
the Startup.LassoApp LassoApp located in the LassoStartup folder executes code which defines a number of
custom tags (e.g. [Email_Send], [Include_URL]) in Lasso Professional 8. Because Startup.LassoApp is located in the
LassoStartup folder, these custom tags are automatically available upon startup.

Preparing Solutions
Any Lasso-based solution can be compiled into a LassoApp following these preparation instructions. These
steps require changes to be made to each Lasso page which needs to link to another file within the LassoApp
and requires files that need to remain user customizable to be stored and referenced outside the LassoApp.

The following steps need to be performed to prepare a solution for compilation as a LassoApp.

	 •	The entire solution must be contained in a single folder including all Lasso pages and image files which
will be compiled into the LassoApp. The folder should only contain text and GIF or JPEG image files.

	 •	The solution must have a single entry point. One file will be loaded when the LassoApp is called, this file
must reference other files within the LassoApp either through HTML links, HTML form actions, redirects or
[Include] tags.

	 •	All links to files or images within the LassoApp must be marked with the [LassoApp_Link] tag. This tag
changes relative paths to a LassoApp specific format.

Preparing Links
The biggest change required to make most solutions ready to be compiled as a LassoApp is to mark all
of the links which reference other files within the solution with the [LassoApp_Link] tag. All HTML anchor
 … , image , and form <form> … </form> tags which reference other files within the
LassoApp need to be marked as well as [Include] and [Library] tags. The [LassoApp_Link] tag is processed when the
solution is compiled into a LassoApp.

Named anchors, links to targets within the same file, mailto links to email addresses, and links to Web sites on
other servers do not need to be marked with the [LassoApp_Link] tag.

The [LassoApp_Link] tag can be safely used in any Lasso solution whether it is compiled into a LassoApp or not.
When used in a non-compiled solution the [LassoApp_Link] simply returns the specified link value unchanged.

Note: The [LassoApp_Link] tag cannot be used within custom tags or custom data types . Since a custom tag could
be called from a different LassoApp than the one in which it is defined (e .g . if a custom tag is defined in the
LassoStartup folder, there is no way for Lasso to determine to which LassoApp the [LassoApp_Link] tag should refer .
See the end of this section for tips on working with custom tags within LassoApps .

To prepare links to other files within the LassoApp:

	 •	Anchor tags which reference other files within the LassoApp need to be marked with the [LassoApp_Link] tag.
The [LassoApp_Link] tag will accept any relative path which is legal within an HTML anchor tag including
those which contain ../ to reference files higher in the folder structure. The following example shows an
HTML anchor tag that references a file named default.lasso contained in a folder named People.

 People Page

After being marked with the [LassoApp_Link] tag this anchor tag appears as follows.

 People Page

Note: Do not mark named anchors, links to targets within the same file, mailto links to email addresses, or
links to Web sites on other servers with the [LassoApp_Link] tag .

6 7 7

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 6 – L a s s o a p p s

	 •	Image tags should be marked with the [LassoApp_Link] tag if the referenced image is contained within
the compiled LassoApp. The following example shows an HTML image tag that references a file named
boat.gif contained in a folder named Images.

After being marked with the [LassoApp_Link] tag this anchor tag appears as follows.

	 •	The action parameter for HTML <form> tags should be marked with the [LassoApp_Link] tag if it reference
a Lasso page explicitly. The following example shows an HTML <form> tag that references a file named
result.lasso which is contained in the same folder as the current page.

<form action="result.lasso" method="POST">
 …
</form>

After being marked with the [LassoApp_Link] tag this HTML <form> tag appears as follows.

<form action="[LassoApp_Link: 'result.lasso']" method="POST">
 …
</form>

	 •	If an HTML <form> tag references Action.Lasso as its action then the value parameter for the appropriate
<input> tag for the -Response command tag should be marked with the [LassoApp_Link] tag. The following
example shows an HTML <form> tag that references Action.Lasso. The response for the form is specified as
response.lasso in a hidden input for the -Response command tag.

<form action="Action.Lasso" method="POST">
 <input type="hidden" name="-Response" value="response.lasso">
 …
</form>

After being marked with the [LassoApp_Link] tag the hidden input appears as follows.

<form action="Action.Lasso" method="POST">
 <input type="hidden" name="-Response"
 value="[LassoApp_Link: 'response.lasso']">
 …
</form>

	 •	The file parameter for an [Include] or [Library] tag needs to be marked using the [LassoApp_Link] tag. The
following examples show an [Include] tag for a file named include.lasso and a [Library] tag for a file library.lasso.

[Include: 'include.lasso']

[Library: 'library.lasso']

After being marked with the [LassoApp_Link] tag the tags appear as follows.

[Include: (LassoApp_Link: 'include.lasso')]

[Library: (LassoApp_Link: 'library.lasso')]

	 •	The response parameter for a [Link_…] tag needs to be marked using the [LassoApp_Link] tag. For example,
the [Link_DetailURL] tag accepts a -Response parameter which specifies the Lasso page that should be returned
when the link is selected. The following example shows a [Link_DetailURL] tag used within an HTML anchor
<a> tag.

 …

After being marked with the [LassoApp_Link] tag, the [Link_DetailURL] tag appears as follows.

<a href="[Link_DetailURL: -Response=(LassoApp_Link: 'response.lasso'),
 -Table='People']"> …

6 7 8

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 6 – L a s s o a p p s

Notice that only the name of the response page is marked with the [LassoApp_Link] tag, not the entire
href attribute of the anchor tag.

To reference files within a LassoApp from a custom tag:

The [LassoApp_Link] tag cannot be used within custom tags and custom data types. The following techniques
can be used to reference files within a LassoApp from custom tags or custom data types.

	 •	References to files can be stored in variables and referenced by variable name within a custom tag. In the
following example a reference to a file include.lasso is stored in a variable named IncludeFile. This variable is
then referenced within a custom tag.

[Variable: 'IncludeFile' = (LassoApp_Link: 'include.lasso')]
…
[Define_Tag: 'myInclude']
 [Return: (Include: $IncludeFile)]
[/Define_Tag]

	 •	References to LassoApp files can be passed into custom tags as parameters. In the following example a
reference to a file include.lasso is passed as a parameter to a custom tag.

[Define_Tag: 'myInclude', -Required='IncludeFile']
 [Return: (Include: #IncludeFile)]
[/Define_Tag]
…
[myInclude: (LassoApp_Link: 'include.lasso')]

Building LassoApps
LassoApps can be built programmatically using the [LassoApp_Create] tag or can be built using
LassoApp Builder provided in the Build > LassoApp Builder section of Lasso Site Administration.

Lasso Site Administration
In order to build a LassoApp using LassoApp Builder, the folder containing the files which will be compiled
into the LassoApp must be within the Web server root or placed in the Lasso Admin/BuildLassoApps folder within
the site folder of the current site (located within the Lasso Professional 8 application folder).

The path to the root of the LassoApp is entered or the name of the folder to be converted to a LassoApp is
selected from a pop-up menu. The name of the entry file within the folder must also specified. Any errors
which occur are reported within the interface. If successful, the completed LassoApp is created in the parent
of the source folder. The LassoApp will have the same name as the source folder with .LassoApp appended.

See the Site Administration Utlities chapter of the Lasso Professional 8 Setup Guide for complete
documentation of LassoApp Builder.

To create a LassoApp using LassoApp Builder:

 1 Place all of the files which will be compiled into the LassoApp into a single folder. The folder should
only contain Lasso pages and image files. All of the Lasso pages should have been prepared following the
instructions in the Preparing Solutions section of this chapter.

For example, place the Lasso pages within a folder named MySolution. This folder contains the entry file
default.lasso, a folder of included sub-files, and a folder of images.

Note: All of the files within the source folder will be compiled into the LassoApp even if some of the files are
never referenced . In order to create the smallest LassoApps possible, any files which are not needed should
be removed from the source folder prior to compiling a LassoApp

 2 Note the location of the MySolution folder within the Web server root or place the folder MySolution into the
Admin/BuildLassoApps folder within the Lasso Professional 8 application folder.

 3 Load Lasso Site Administration in a Web browser and go to the Build > LassoApp Builder section.

6 7 9

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 6 – L a s s o a p p s

http://www.example.com/SiteAdmin.LassoApp

 4 Enter the path to the MySolution folder or choose MySolution from the pop-up menu and ensure that the entry
file is default.lasso. Select the Create LassoApp button to create the LassoApp in the Admin/BuildLassoApps
folder. Or, select the Download LassoApp button to download the created LassoApp through the Web
browser.

Note: If the name of the source folder is not present in the pop-up menu select the Refresh button .

 5 If any errors are reported, correct them within the Lasso pages of the solution and then return to Lasso Site
Administration to build the LassoApp again. The LassoApp Builder must complete without any errors in order
for a LassoApp file to be created.

 6 The completed LassoApp will be in the Admin/BuildLassoApps folder named MySolution.LassoApp or will be
downloaded through the Web browser. This file should be copied into the Web serving folder and can then
be loaded through a Web browser. If this solution were placed at the root of the Web serving folder it could
be loaded through the following URL.

http://www.example.com/MySolution.LassoApp

[LassoApp_Create] Tag
In order to build a LassoApp using the [LassoApp_Create] tag the files which will be compiled into a LassoApp
need to be placed in a single folder on the same machine as Lasso Service.

The parameters for the [LassoApp_Create] tag are detailed in Table 2: [LassoApp_Create] Tag Parameters. An
example of using the tag to create a LassoApp follows. The [LassoApp_Create] tag will return 0 if it is successful
creating a LassoApp or an error message otherwise. The tag will replace an existing LassoApp file if the -Result
parameter specifies a file that already exists.

Table 2: [LassoApp_Create] Tag Parameters

Parameter Description

-Root The folder which contains the files that will be compiled into the LassoApp.

-Entry The default Lasso page within the LassoApp which will be loaded when the
LassoApp is called. Should be specified relative to the root folder.

-Result The destination file name for the created LassoApp. Must end in the file suffix
.LassoApp.

To create a LassoApp using the [LassoApp_Create] tag:

 1 Place all of the files which will be compiled into the LassoApp into a single folder. The folder should
only contain Lasso pages and image files. All of the Lasso pages should have been prepared following
the instructions in the Preparing Solutions section of this chapter. This folder contains the entry file
default.lasso, a folder of included sub-files, and a folder of images.

 2 Create a Lasso page which contains the following [LassoApp_Create] tag. This tag will build a LassoApp
named MySolution.LassoApp stored at the same location as the root folder defined above. The entry file for the
LassoApp will be default.lasso immediately inside the MySolution folder.

The [LassoApp_Create] tag would be as follows.

[LassoApp_Create: -Root='/MySolution/',
 -Entry='default.lasso',
 -Result=''/MySolution.LassoApp']

 3 If any errors are reported, correct them within the Lasso pages of the solution and then reload the Lasso
page to build the LassoApp again.

 4 The completed LassoApp should have been created within the Web serving root and can be loaded through
the following URL.

http://www.example.com/MySolution.LassoApp

6 8 0

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 6 – L a s s o a p p s

Tips and Techniques
This section presents a number of tips and techniques which can make creating professional quality
LassoApps easier.

Naming Conventions
LassoApps should be named with the identifier of the company that created the LassoApp followed by
the name of the solution. For example, if LassoSoft shipped a phone book LassoApp it could be named
LS_PhoneBook.LassoApp. This ensures that the LassoApp name will not conflict with LassoApps created by other
companies.

Warning: Do not compile LassoApps with the same name as the LassoSoft supplied LassoApps (e .g .
Startup.LassoApp or Admin.LassoApp) . LassoSoft cannot provide any warranty or support for customized versions
of these LassoApps or for Lasso Professional 8 installations which make use of customized versions of these
LassoApps .

Run-Time Errors
Errors which occur when a LassoApp is executing are reported the same way they are for any Lasso pages. It is
important to thoroughly test a LassoApp to ensure that all errors are caught and properly reported to the site
visitor. The [Protect] … [/Protect], [Handle] … [/Handle] and [Fail] tags can be used to trap for errors and handle them
so that the errors are not reported to the site visitor.

Auto-Building Databases
If a LassoApp requires a database table to store solution-specific data it can be created automatically by the
LassoApp using the [Database_Create…] tags. Using this technique ensures that a LassoApp can be shipped as a
single file and cuts down on the installation required by the end-user.

	 •	LassoApps can safely create tables in the Site database within any installation of Lasso Professional 8. This
database is the appropriate place to store both preferences and solution-specific data.

	 •	Tables created in the Site database should follow a naming convention which includes the name of the
LassoApp in each table name. For example, a LassoApp named MySolution.LassoApp could create tables
named MySolution_Preferences and MySolution_Data. Using a clear naming convention ensures that the global
administrator knows why individual tables were created and ensures that different LassoApps do not create
tables with the same name.

	 •	If necessary, the LassoApp may need to ask for additional permissions in order to create new tables or
to gain access to the tables that have been created. See the section on Lasso Security below for more
information.

	 •	Always check to make sure that a table does not exist before creating a new table. A LassoApp should never
overwrite data in the Site table without explicitly ensuring that the administrator wants to do so.

Lasso Security
LassoApps are executed with the permissions of the current site visitor the same as any Lasso pages. If a
LassoApp needs to have access to databases, tables, or tags that can be secured in Lasso Site Administration
then it should check that the appropriate permissions are present before executing.

Tags

If a LassoApp requires access to tags which can be secured in Lasso Site Administration such as the [Admin_…]
tags, [Database_Create…] tags, [File_…] tags, [Email_Send] or [Event_Schedule] tags, it should first check to be sure
those tags are allowed by the current user before executing. The following code will check to be sure the
[Email_Send] tag is available and display an error message if it is not.

6 8 1

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 6 – L a s s o a p p s

[If: (Lasso_TagExists: 'Email_Send') == False]

Error: The tag Email_Send is required in order for this LassoApp to execute.
 Please enable it within Lasso Site Administration before proceeding.
[/If]

LassoApps can be created even if the tags they require are not present when they are built and compiled.
However, syntax errors will be reported when the LassoApp is served or executed.

Databases and Tables

If a LassoApp requires access to certain databases or tables it should first check to be sure they are available
to the current user before executing. The following code will check to be sure the People table of the
Contacts database is available.

[Inline: -Database='People', -Table='Contacts', -Show]
 [If: (Error_CurretError) != (Error_NoError) || (Field_Name: -Count) == 0]

Error: The People table of the Contacts database is required
 in order for this LassoApp to execute. Please enable it within Lasso
 Administration before proceeding.
 [/If]
[/Inline]

Groups and Users

The [Admin_…] tags can be used to create new users and assign them to a group. These tags are essential if
Lasso Security is going to be used to handle multiple user accounts for a LassoApp. Since there is no tag
to create a group and assign it permissions, the documentation for a LassoApp solution will need to walk
a Lasso global administrator through creating a group with the proper name, assigning permissions, and
creating a group administrator.

Lasso Startup
If code needs to be executed when Lasso Service starts up, then a LassoApp can be placed within the
LassoStartup folder within the Lasso Professional 8 application folder. Usually, a solution that requires startup
code would consist of two LassoApps, one that installs in LassoStartup and a second that defines the user
interface for the solution.

6 8 2

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 6 – L a s s o a p p s

57
Chapter 57

Custom Tags

This chapter introduces custom tags and shows how they can be created entirely in LassoScript.

	 •	Overview introduces the concepts behind custom tags including naming conventions, namespaces,
parameter references, and error reporting.

	 •	Custom Tags describes how to create custom tags including information about processing parameters and
using local variables.

	 •	Container Tags describes how to create custom container tags and looping container tags.

	 •	Web Services, Remote Procedure Calls, and SOAP describes how to create tags that function as remote
procedure calls through XML-RPC or SOAP and how to call those tags from another server.

	 •	Atomic Tags describes how to create atomic tags which control access to shared resources.

	 •	Asynchronous Tags describes how to create custom asynchronous process tags and background processes.

	 •	Overloading Tags describes how to use criteria to determine which tag will execute and how to redefine
built-in Lasso tags.

	 •	Constants describes how to create constants in LassoScript.

	 •	Libraries describes how to package sets of custom tags for distribution including how to create on-demand
tag libraries.

Overview
Lasso Professional 8 allows Web developers to extend LassoScript by creating custom tags programmed using
Lasso tags.

Custom tags have the following features:

	 •	Custom tags operate just like built-in substitution tags. They can be used in nested expressions, return data
of any data type, and allow the use of encoding keywords.

	 •	Custom process, substitution, or container tags can be created.

	 •	They can be created in any Lasso page and used instantly.

	 •	They are written in LassoScript. No programming experience or knowledge of a programming language
other than LassoScript is required.

	 •	They can be collected into libraries of tags which can be loaded into any Lasso page using the [Library] tag.

	 •	Custom tags can be used as the target for remote procedure calls enabling communication between Web
servers.

	 •	Existing tags can be redefined.

	 •	Tags can be defined with criteria for when they will run. This allows the same tag name to be used with
different parameters and makes it easy to redefine tags for custom purposes.

	 •	They can be defined in a Lasso page or library within the LassoStartup folder, making them available to all
pages processed by Lasso.

6 8 3

L a s s o 8 . 5 L a n g u a g e g u i d e

	•	Atomic tags automatically block when they are called from separate page loads or threads. This allows for controlled
access to shared resources such as global variables, network connections, etc.

	 •	Asynchronous tags allow operations to be performed in a separate thread so the current Lasso page is
served as fast as possible to the site visitor.

Custom data types can also be created in LassoScript. See the Custom Types chapter for more information.

Possible Uses
Custom tags can be used in any of the following ways:

	 •	To define a new tag that can be called like any built-in Lasso tags

	 •	To reuse a portion of LassoScript code several times in the same Lasso page.

	 •	To create a macro which allows the same HTML code to be reused several times without being retyped.

	 •	To structure the logic of complex calculations using local variables and tag parameters.

	 •	To redefine and customize existing Lasso tags.

	 •	To defer processing of some code until after the visitor has already received the Lasso page.

	 •	To allow remote Web servers to make remote procedure calls to Lasso through XML-RPC.

Naming Conventions
Lasso Professional 8 has support for tag namespaces. All custom tags which are created by a developer should
be defined in a namespace unique to the developer. For example, if LassoSoft was providing a custom tag
which wrapped code with HTML bold tags it might be placed in the LS_ namespace and named [LS_Bold]. All
of the tags in this guide will be defined in the Ex_ namespace meaning Example.

RPC Note: Tags which will be used for XML-RPC are typically named with a group named followed by a method,
e .g . group.method .

Parameter References
All values are passed to and from custom tags by reference (unless the -Copy keyword is specified for specific
parameters when creating the custom tag). This improves the speed and efficiency of custom tags by reducing
the number of times that data needs to be copied. Parameter references make tags that perform operations on
their parameters possible, but require careful programming in order to avoid unintended side-effects.

Lasso is an object-oriented system and every value in a given Lasso page can be thought of as an object.
Variables are simply references to objects and it is possible to have multiple references to the same object.

For example, the [Iterate] … [/Iterate] tag accepts two parameters. The first is an array of values. The second is a
variable that will be set as a reference to each element in the array in turn. The values are not copied out of
the array, but the variable points to each value in turn. If the variable modifies the value then that new value
is automatically modified in the array as well. This code modifies each element in an array to be uppercase.

[Var: 'myArray' = (Array: 'one','two','three')]
[Iterate: $myArray, (Var: 'myItem')]
 [Var: 'myItem' = (String_Uppercase: $myItem)]
[/Iterate]
[$myArray]

�	 Array: (ONE), (TWO), (THREE)

Custom tags work similarly. The following rules defined how values are passed to and from custom tags.

	 •	All values passed into a custom tag are passed by reference. References are stored in local variables with the
same name as the parameter and in a [Params] array.

	 •	If the -Copy keyword is used after specifying a named parameter with the -Required or -Optional keywords then
that single parameter is passed into the custom tag by copy.

6 8 4

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

	 •	Any modifications of the values in the automatically created local variables or the [Params] array will result
in the original values outside the custom tag being modified.

	 •	It is recommended to use a set of uniquely named local variables within the custom tag so as not to
interfere with the parameters passed by reference. The values of parameters can be copied into the local
variables making their modifications safe.

	 •	Local variables are created new for each custom tag call. References to local variables do not persist from
tag call to tag call.

	 •	All values are returned from a custom tag by reference. Normally this will be a reference to a local variable.
Since a new set of local variables are created each time a tag is called the return value is safe.

	 •	The return value can also be a reference to one of the input parameters or to a page or global variable. In
this case any further modifications to the return value after the custom tag has returned will be reflected in
the original value.

These rules are illustrated in the many examples that follow.

Error Reporting
Lasso has a flexible error reporting system which can be used to control the amount of information provided
to the site visitor when an error occurs. Since custom tags are self-contained it is often desirable to develop
and debug them independent of the site on which they are used.

The [Lasso_ErrorReporting] tag can be used with the -Local keyword to set the error reporting level for the current
custom tag. Using this tag the error level can be set to Full while developing a tag in order to see detailed error
messages.

[Lasso_ErrorReporting: 'Full', -Local]

Once the custom tag is debugged and ready for deployment the error reporting level can be adjusted to
None in order to effectively suppress any details about the coding of the custom tag from being reported.

[Lasso_ErrorReporting: 'None', -Local]

See the Error Controls chapter in the Language Guide for additional details about the [Lasso_ErrorReporting] tag
and other error control tags.

Custom Tags
Custom tags can be created in LassoScript using the [Define_Tag] … [/Define_Tag] tags. The following table details
the tags that are used to create custom tags. These tags are used to process the parameters of the custom tag
and to return values from the custom tag.

Custom substitution and process tags can be created in any Lasso page and will be available immediately.
Custom container tags can only be created in the LassoStartup folder. See the section on Libraries for
information about how to create libraries of tags, load tags in LassoStartup, and create tags which can be used
by any Lasso page.

It is not possible to create custom command tags using LassoScript. Command tags are implemented in data
source modules. See the documentation on LCAPI later in this book for more information.

See the Custom Types chapter for information about creating custom data types and member tags.

Table 1: Tags For Creating Custom Tags

Tag Description

[Define_Tag] Defines a new substitution tag or a new member tag if used within a type
definition. Requires a single parameter, the name of the tag to be defined. Other
parameters are defined in Table 2: [Define_Tag] Parameters.

[Local] Sets or retrieves the value of a local variable within a custom tag definition.

[Local_Defined] Checks to see if a local variable has been defined within a custom tag definition.

6 8 5

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

[Local_Remove] Removes a local variable.

[Locals] Returns a map of all the local variables which have been defined within a custom
tag definition.

[Params] Returns an array of all the parameters which were passed to the custom tag.

[Params_Up] Returns an array of all the parameters which were passed to the custom tag
which called the current custom tag.

[Return] Returns a value from a custom tag. No further processing is performed.

[Run_Children] Process the contents of a custom tag created with the -Container option.

[Tag_Name] Returns the name of the current tag.

The parameters for the [Define_Tag] … [/Define_Tag] tags are detailed in the following table. The type of tag
created, required parameters, return data type, and more are all specified in the opening [Define_Tag] tag.

Table 2: [Define_Tag] Parameters

Tag Description

'Tag Name' The name of the tag to be defined. Required.

-Namespace The name of the namespace in which the tag is defined. Optional. If not specified
then tags will be placed in the current namespace.

-Async Specifies that the tag should be run asynchronously. Asynchronous tags cannot
return a value. Optional.

-Atomic Specifies that the tag should run atomically. Only one instance of that tag will be
allowed to run. Any other page loads or threads that call the tag will block until
the first instance has finished running.

-Container Specifies that the tag is a container tag. [Run_Children] can be used if this
parameter is specified. Optional. See also -Looping for looping container tags.

-Copy Specifies that the preceding -Required or -Optional parameter should be copied
rather than passed by reference.

-Criteria Specifies the criteria under which the tag will run. If the criteria is not met then
the next tag in the calling chain will be used instead. Optional.

-Description A brief description of the tag. Can include calling instructions, author of the tag,
etc. Optional.

-EncodeNone Specifies that the return value of the tag should not be encoded by default. If this
keyword is not specified then the return value will be HTML encoded by default.

-Looping Specifies that the tag is a looping container tag. [Run_Children] can be used
if this parameter is specified. Optional. See also -Container for non-looping
container tags.

-Optional Names an optional parameter of the tag. Optional.

-Priority Requires the value 'High', 'Low', or 'Replace'. Specifies whether the tag should
replace an existing tag with the same name or be placed before or after existing
tags in the calling chain. Optional.

-Privileged Specifies that the custom tag should run with the privileges of the current user
rather than with the privileges of the user who ultimately calls the custom tag.

-Required Names a required parameter of the tag. If the parameter is not specified then an
error will result. Optional.

-ReturnType Specifies the type of the return value of the tag. If a value of different type is
returned then an error is generated.

-RPC Specifies that the tag should be made available to remote Web servers as a
remote procedure call. The tag can then be accessed through RPC.LassoApp.

-SOAP Specifies that the tag should be made available to remote Web servers as a
SOAP operation.The tag can then be accessed through RPC.LassoApp. The
-Type and -ReturnType tags must be used to specify parameter and return types.

6 8 6

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

-Type Specifies the type for the preceding -Required or
-Optional parameter. If the tag is called with a parameter that is not of the proper
type then an error is generated.

See the section on Libraries for information about how to create libraries of tags, load tags in LassoStartup,
and create tags which can be used by any Lasso page.

It is not possible to create custom command tags using LassoScript. See the Custom Types chapter for
information about creating custom data types and member tags.

Substitution Tags
A new substitution tag is defined using the [Define_Tag] … [/Define_Tag] container tag within an enclosed [Return]
tag that defines the value of the tag. The opening [Define_Tag] tag requires the name of the new substitution
tag to be defined. All of the LassoScript code between the two tags is stored and is executed each time the tag
is called.

In the following example, a tag [Ex_EmailAddress] is defined which returns an example email address for John
Doe, johndoe@example.com.

[Define_Tag: 'EmailAddress', -Namespace='Ex_']
 [Return: 'johndoe@example.com']
[/Define_Tag]

This tag can be called like any substitution tag within the Lasso page where the tag is defined. The following
code calls this tag twice, once to provide the address for the HTML anchor tag and a second time to provide
the text of the anchor.

 [Ex_EmailAddress]

�	 johndoe@example.com

Process Tags
A new process tag is defined using the [Define_Tag] … [/Define_Tag] container tags. The opening [Define_Tag] tag
requires the name of the new process tag to be defined. All of the LassoScript code between the two tags is
stored and is executed each time the tag is called. Since process tags do not return a value, the body of the tag
should not contain a [Return] tag.

In the following example, a tag [Ex_SendEmail] is defined which sends an email to an example email address
for John Doe, johndoe@example.com. The tag is defined within a LassoScript.

<?LassoScript
 Define_Tag: 'SendEmail', -Namespace='Ex_';
 Email_Send: -Host='mail.example.com',
 -To='johndoe@example.com',
 -From='lasso@example.com',
 -Subject='Sample Email',
 -Body='This email was sent from a custom tag.';
 /Define_Tag;
?>

This tag can be called like any process tag within the Lasso page where the tag is defined. The following code
calls this [Ex_SendEmail] so an email will be sent to johndoe@example.com each time the page with this code is
served by Lasso.

[Ex_SendEmail]

Privileged Tags
Custom tags normally run with the permissions of the user that calls the custom tag. Using the -Privileged
keyword a custom tag will instead run with the permissions of the user who defined the custom tag.

6 8 7

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

This allows the execution of privileged actions to be written into custom tags. The privileged action can be
performed without opening up general permission for performing similar actions to the end-users.

For example, a custom tag which is defined in LassoStartup that has the -Privileged keyword will always execute
as the global administrator of the machine. Privileged custom tags can then be used to modify internal
security settings or perform other actions that require global administrator permission.

Returning Values
In order for a custom tag to return a value it needs to use the [Return] tag. The parameter for the [Return] tag
will be returned as the value of the custom tag and no further processing will be performed. A value of any
type can be returned using the [Return] tag including simple decimal or integer numbers, strings, complex
maps and arrays, or even custom types.

Custom tags can also return values by setting variables. See the section on Page Variables that follows for
additional details.

The following custom tag returns a string that informs the site visitor of what day it is. If the current
day is January 1st then Happy New Year! is returned. Note that if the conditional returns True then
the [Return: 'Happy New Year!'] tag is executed and the tag is exited without executing the second [Return] tag that
follows.

[Define_Tag: 'Greeting', -Namespace='Ex_']
 [If: (Date_GetDay) == 1 && (Date_GetMonth) == 1]
 [Return: 'Happy New Year!']
 [/If]
 [Return: 'The date is ' + (Server_Date: -Long) + '.']
[/Define_Tag]

When executed on any day other than the 1st of January this tag returns the current date.

[Ex_Greeting]

�	 The date is August 27, 2001.

Encoding
Encoding is handled automatically by Lasso when values are returned from a custom tag. Encoding follows
the same rules as for built-in substitution tags. These rules are summarized below.

	 •	If no encoding keyword is specified and the custom tag returns a string value then the tag follows the same
rules as built-in substitution tags. The string value will be HTML encoded if it is output to the Lasso page or
will have no encoding applied if the tag is used as a sub-tag or in an expression.

The following custom tag [Ex_String] would have HTML encoding applied.

[Ex_String]

�	 Bold Text

However, if the same tag is used as a sub-tag, no encoding is applied.

[Variable: 'myString'=(Ex_String)]
[Variable: 'myString', -EncodeNone]

�	 Bold Text

Note: If the tag is used within [Encode_Set] … [/Encode_Set] tags then the default encoding which is set in the
opening [Encode_Set] tag will be used instead of -EncodeHTML when the tag’s value is output directly to a Lasso
page .

	 •	If no encoding keyword is specified and the custom tag returns any data type other than string then no
encoding is applied and the specified data type is returned.

The following custom tag [Ex_Array] has no encoding applied since it returns an array.

6 8 8

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

[Ex_Array]

�	 (Array: (Bold Text))

Note: Even if the tag is used within [Encode_Set] … [/Encode_Set] tag, no encoding will by applied by default
unless an explicit encoding keyword is specified .

	 •	If an explicit encoding keyword other than -EncodeNone is specified then the return value from the tag is
converted to a string and the specified encoding is applied. Use of an explicit encoding keyword guarantees
that the value from the tag will be of data type string.

The following custom tag [Ex_Array] has explicit HTML encoding applied.

[Ex_Array: -EncodeHTML]

�	 (Array: (Bold Text))

Note: The encoding keyword -EncodeNone instructs Lasso that no encoding is desired for a custom tag . For
custom tags which return any data type other than string, -EncodeNone is equivalent to not specifying an
encoding keyword .

Parameters
Custom tags can accept any mix of named or unnamed parameters. These parameters can be named using the
-Required and -Optional parameters in the opening [Define_Tag] tag. Each parameter is automatically defined as a
local variable within the tag. If a required parameter is omitted from a tag call then an error is generated. If
an optional parameter is omitted then the local variable corresponding to that parameter will not be defined.

	 •	Named Parameters – The -Required and -Optional parameters for a tag can be listed in any order. Each
-Required parameter must have a matching keyword/value parameter in the parameters for the tag. If the
-Copy keyword follows either a -Required or -Optional keyword then that parameter will be passed by copy
rather than by reference.

The following example defines a tag [Ex_Note] which accepts two parameters. -Message is required and is the
message to be displayed. -Font is an optional parameter that changes the font of the displayed message if it
is specified, otherwise Arial is used.

[Define_Tag: 'Note', -Namespace='Ex_', -Required='Message', -Optional='Font']
 [If: (Local_Defined: 'Font') == False]
 [Local: 'Font' = 'Arial']
 [/If]
 [Return: ' ' + #Message + ' ']
[/Define_Tag]

The parameters can be used in any order when the tag is called, but the -Message parameter must be
present.

[Ex_Note: -Font='Helvetica', -Message='Hello World', -EncodeNone]

�	 Hello World

[Ex_Note: -Message='Hello World', -EncodeNone]

�	 Hello World

Note: Extra named parameters passed into a custom tag will also create local variables automatically even if
the -Required and -Optional parameters are not used .

	 •	Unnamed Parameters – The -Required parameters for a tag should be listed in the order they will be
specified in the tag followed by any optional parameters that may be specified. Each unnamed parameter
of the tag will be assigned in order to the -Required or -Optional parameter in the corresponding position.

The tag [Ex_Note] defined above accepts two parameters. The first parameter is required and is assigned the
name Message. The second parameter is optional and is assigned the name Font if specified.

6 8 9

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

When the tag is called at least one parameter must be specified. If a second parameter is specified it is used
as the font for the message, otherwise the default font is used.

[Ex_Note: 'Hello World', 'Helvetica', -EncodeNone]

�	 Hello World

[Ex_Note: 'Hello World', -EncodeNone]

�	 Hello World

	 •	Combination Parameters – A combination of named and unnamed parameters can be used. First, all
keyword/value parameters are assigned to the -Required or -Optional parameters specified in the opening
[Define_Tag] tag. Then, any remaining parameters are assigned in order to any -Required or -Optional parameters
that have not yet been assigned values.

For example, the tag [Ex_Note] defined above is called with one unnamed parameter and one keyword/value
-Font parameter. First, the -Font parameter is assigned to the -Optional font parameter. Then, the unnamed
parameter is assigned to the -Required message parameter.

[Ex_Note: 'Hello World', -Font='Helvetica', -EncodeNone]

�	 Hello World

	 •	Parameters Types – The type of each parameter can be specified by including a -Type parameter
immediately after the -Required or -Optional parameter. When the tag is called if the specified parameter is not
of the proper type then an error will be generated.

The [Ex_Note] tag can be redefined to require that the -Message parameter be a string.

[Define_Tag: 'Note', -Namespace='Ex_', -Required='Message', -Type='String',
 -Optional='Font']
 [If: (Local_Defined: 'Font') == False]
 [Local: 'Font' = 'Arial']
 [/If]
 [Return: ' ' + #Message + ' ']
[/Define_Tag]

Now if the tag is called with a decimal value for the -Message parameter an error will be generated.

[Ex_Note: -Message=99, -EncodeNone]

�	 Syntax Error

Any tag defined with -Required and -Optional parameters can always be called with a combination of named and
unnamed parameters. Documentation for custom tags should always specify how a tag should be called.

Parameters Array
If greater control is required over the parameters which are passed into a tag then the [Params] array can be
inspected directly. This array contains one element for each parameter that is passed into a custom tag.

	 •	Simple Parameters – Simple parameters are included as single elements within the array. Each parameter
has the same data type as the literal or variable which was passed to the tag.

	 •	Name/Value Parameters – Name/Value parameters are included as elements of the data type pair within
the array. Each part of the pair has the same data type as the literal or variable which was passed to the tag.

	 •	Keyword Parameters – Keyword parameters are included as string parameters. They should be
distinguished by requiring that all keyword names start with a leading hyphen.

	 •	Keyword/Value Parameters – Keyword/Value parameters are included as a pair with a string as the first
element and the value as the second element. They should be distinguished by requiring that all keyword
names start with a leading hyphen.

	 •	Encoding Keywords – Encoding keywords are handled automatically by Lasso. They are not passed to
custom tags within the [Params] array. Custom tags do not need to do anything special to take advantage of
encoding nor is there any way to disable automatic encoding of returned string values.

6 9 0

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

The [Params_Up] tag is a special purpose tag that allows inspection of the [Params] array from the custom tag
which called the current tag. This tag can only be used if the current tag was called from within a custom tag
and can be used to create tags that change their values based on the parameters to the calling tags.

To inspect the parameters of a custom tag:

The [Params] array provides access to all the parameters of the current tag. The following example shows a
custom tag [Ex_Echo] that outputs information about all the parameters that were passed to the tag by looping
through the [Params] array.

[Define_Tag: 'Echo', -Namespace='Ex_']
 [Local: 'Output' = '']
 [Loop: (Params)->Size]
 [Local: 'Temp' = (Params)->(Get: (Loop_Count))]
 [If: #Temp->Type == 'pair']
 [#Output += '
Pair: ']
 [#Output += '
 ' + #Temp->First->Type + ': ' + (#Temp->First)]
 [#Output += '
 ' + #Temp->First->Type + ': ' + (#Temp->Second)]
 [Else]
 [#Output += '
' + #Temp->Type + ': ' + (#Temp)]
 [/If]
 [/Loop]
 [If: (#Output == '')]
 [#Output = '
No Parameters']
 [/If]
 [Return: #Output]
[/Define_Tag]

When this tag is called with different parameters the following output is created. Note that keywords are
simply strings that start with a hyphen and that the -EncodeNone encoding keyword is not represented in the
output.

[Ex_Echo: 'One', 'Two='Three', -Four, -Five='Six', -Seven=8, -Nine=1.0, -EncodeNone]

�	 String: One
Pair:
 String: Two
 String: Three
String: -Four
Pair:
 String: -Five
 String: Six
Pair:
 String: -Seven
 Integer: 8
Pair:
 String -Nine
 Decimal: 1.0

To get the value of a keyword/value parameter:

The following custom tag uses the [Params->Find] tag to retrieve several named keyword/value parameters from
the [Params] array. The tag [Ex_Greeting] accepts two parameters: -First which should have the first name of a
person as its value and -Last which should have the last name of its person as its value. It returns a greeting to
that person.

<?LassoScript
 Define_Tag: 'Greeting', -Namespace='Ex_';
 Local: 'First' = Params->(Find: '-First')->(Get: 1);
 Local: 'Last' = Params->(Find: '-Last')->(Get: 1);
 Return: 'Dear ' + #First + ' ' + #Last;
 /Define_Tag;
?>

6 9 1

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

When the tag is called it parses the two defined parameters and ignores all others.

[Ex_Greeting: -First='John', -Last='Doe'] � Dear John Doe

[Ex_Greeting: -First='John', -Last='Doe', -Title='Mr.'] � Dear John Doe

To get the value of all unnamed parameters:

The [Params] array provides access to all the parameters of the current tag. The following example shows a
custom tag [Ex_Concatenate] that concatenates the value of all simple, unnamed parameters together and
ignores all name/value and keyword/value parameters.

[Define_Tag: 'Concatenate', -Namespace='Ex_']
 [Local: 'Output' = '']
 [Loop: (Params)->Size]
 [Local: 'Temp' = (Params)->(Get: (Loop_Count))]
 [If: #Temp->Type != 'pair']
 [#Output += #Temp]
 [/If]
 [/Loop]
 [Return: #Output]
[/Define_Tag]

When this tag is called with different parameters the following output is created. Note that any named
parameters are ignored and that the -EncodeNone encoding keyword is not represented in the output.

[Ex_Echo: 'One', 'Two='Three', -Four, -Five='Six', -Seven=8, -Nine=1.0, -EncodeNone]

�	 One-Four

To get the parameters from the calling tag:

The [Params_Up] tag provides access to the parameters of the calling tag. The following tag
[Ex_UnnamedParams] returns an array of all unnamed parameters from the calling tag. This tag could be used to
filter the [Params] array so only unnamed parameters remained.

[Define_Tag: 'UnnamedParams', -Namespace='Ex_']
 [Local: 'Output' = (Array)]
 [Loop: (Params_Up)->Size]
 [Local: 'Temp' = (Params_Up)->(Get: (Loop_Count))]
 [If: #Temp->Type != 'pair']
 [#Output->(Insert: #Temp)]
 [/If]
 [/Loop]
 [Return: #Output]
[/Define_Tag]

The [Ex_UnnamedParams] tag can now be used to rewrite the [Ex_Concatenate] custom tag by looping through the
[Ex_UnnamedParams] array rather than through the [Params] array.

[Define_Tag: 'Concatenate', -Namespace='Ex_']
 [Local: 'Output' = '']
 [Local: 'Unnamed_Params' = (Ex_UnnamedParams)]
 [Loop: (#Unnamed_Params)->Size]
 [#Output += (#Unnamed_Params)->(Get: (Loop_Count))]
 [/Loop]
 [Return: #Output]
[/Define_Tag]

When this tag is called with different parameters the following output is created. Note that any named
parameters are ignored and that the -EncodeNone encoding keyword is not represented in the output.

[Ex_Echo: 'One', 'Two='Three', -Four, -Five='Six', -Seven=8, -Nine=1.0, -EncodeNone]

�	 One-Four

6 9 2

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

Page Variables
Custom tags can set and retrieve the values of variables which are defined in the current Lasso page. This
provides a method of passing additional parameters to custom tags by setting pre-defined variables and a
method of passing multiple values out of a custom tag.

Any use of page variables should be considered carefully. Local variables, which are defined in the following
section, are usually sufficient for storing data required while executing a tag. If data needs to be stored
between executions of a tag then it might be more efficient to create a custom data type. See the following
section on Custom Types for more information.

If a custom tag must store values in page variables it should precede all variable names with the full name of
the custom tag followed by an underscore. For example, the custom tag [Ex_Concatenate] would create variables
named Ex_Concatenate_Value, Ex_Concatenate_Output, etc.

Local Variables
Each custom tag can create and manipulate its own set of local variables. These variables are separate from
the page variables and are deleted when the custom tag returns. Using local variables ensures that the custom
tag does not alter any variables which other custom tags or the page developer is relying on having a certain
value.

For example, many developers will use the variable Temp to store temporary values. If a page developer is
using the variable Temp and then calls a custom tag which also sets the variable Temp, then the value of the
variable will be different than expected.

The solution is for the custom tag author to use a local variable named Temp. The local variable does not
interfere with the page variable of the same name and is automatically deleted when the custom tag returns.
In the following example, a custom tag returns the sum of its parameters, storing the calculated value in Temp.

<?LassoScript
 Define_Tag: 'Sum', -Namespace='Ex_';
 Local: 'Temp'=0;
 Loop: (Params)->Size;
 Local: 'Temp'=(Local: 'Temp') + (Params)->(Get: Loop_Count);
 /Loop;
 Return: #Temp;
 /Define_Tag;
?>

The final reference to the local variable temp is as #Temp. The # symbol works like the $ symbol for page
variables, allowing the variable value to be returned using shorthand syntax.

When this tag is called, it does not interfere with the page variable named Temp.

[Variable: 'Temp' = 'Important value:']
[Variable: 'Sum' = (Ex_Sum: 1, 2, 3, 4, 5)]
['
' + $Temp + ' ' + $Sum + '.']

�	
Important value: 15.

Parameter and Return Types
The -Type and -ReturnType parameters can be used to check that the parameters which are being passed to the
tag are of the proper type before the tag is executed and that the return value of the tag is the proper type
when the tag completes.

The -Type parameter is placed immediately after each -Required or -Optional parameter. The corresponding
parameter must be of the specified type when the tag is executed or a syntax error is generated. Using these
tags reduces the amount of double checking of types that is required within the body of the tag.

6 9 3

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

The -ReturnType parameter specifies the type that the returned value of the tag must be. If the tag attempts to
return a value of a different type then an error is generated. Using this tag is useful as a double check for a
tag that is always expected to return a certain data type. It makes enforcement of the return type explicit rather
than relying on the custom tag author to ensure that the return type is always proper.

[Define_Tag: 'Ex_Bold', -Namespace='Ex_', -Required='theString', -Type='String',
 -ReturnType='String']
 [Return: '' + #theString + '']
[/Define_Tag]

If the [Ex_Bold] tag is called with a number then a syntax error will be returned. The following example first
shows a successful call to the tag, then an unsuccessful call.

[Ex_Bold: 'Bold Text'] � Bold Text

[Ex_Bold: 123.456] � Syntax Error

Criteria
The -Criteria parameter allows custom tags to check certain conditions before any code in the tag is executed.
Usually this is used to confirm that the appropriate parameters have been passed to the custom tag. If the
criteria fails then a syntax error will be generated.

The -Criteria parameter requires a conditional expression. If the evaluated expression returns False then the tag
execution is halted and an error is returned.

The code within the -Criteria are executed as if they were specified within the body of the
[Define_Tag] … [/Define_Tag]. Locals can be used to reference -Required or -Optional parameters and the [Params]
array can be inspected. -Criteria can also inspect page variables.

To use criteria to check the parameters of a custom tag:

Specify the -Criteria parameter in the opening [Define_Tag] tag. If the condition in the criteria fails then the tag
will not be executed. The following code checks to be sure that the tag’s required parameter is a string.

[Define_Tag: 'Bold', -Namespace='Ex_', -Required='theString',
 -Criteria=(#theString->Type == 'string')]
 [Return: '' + #theString + '']
[/Define_Tag]

If the [Ex_Bold] tag is called with a number then a syntax error will be returned. The following example first
shows a successful call to the tag, then an unsuccessful call.

[Ex_Bold: 'Bold Text'] � Bold Text

[Ex_Bold: 123.456] � Syntax Error

Error Control
Custom tags should use the -Required, -Optional, -Type, -ReturnType, and -Criteria parameters to ensure that the
parameters of the tag are of the proper type and that the return value is of the proper type. These tags ensure
that Lasso developers are alerted of errors when the page is first executed, rather than encountering obscure
runtime errors later.

Errors can be returned from custom tags using the [Error_SetErrorMessage] and [Error_SetErrorCode] tags. A
custom tag which is explicitly returning an error code should always return [Error_NoError] if no error occurred
or an explicit error message otherwise.

6 9 4

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

Container Tags
A container tag can be created by specifying either the -Container or -Looping keyword within the opening
[Define_Tag] tag. When the tag is used both an opening and a closing tag must be specified or an error will
occur. The return value of the tag replaces the entire container tag. The contents of the container tag can be
accessed using the [Run_Children] tag.

If the -Looping keyword is used the [Loop_Count] will be automatically changed when the custom tag is called. If
the -Container keyword is used then the [Loop_Count] will not be modified by the container tag. This distinction
allows both looping and simple container tags to be created.

Note: The output of a container tag is not encoded . This allows HTML to be output from container tags without
requiring an -EncodeNone tag .

To create a simple container tag:

The following example creates a simple container tag [Ex_Font] … [/Ex_Font] that wraps its parameters with
an HTML tag. The tag takes three optional parameters -Face, -Size, and -Color which correspond to the
parameters of the HTML tag.

[Define_Tag: 'Font', -Namespace='Ex_', -Container,
 -Optional='Face', -Optional='Size', -Optional='Color']
 [If: !(Local_Defined: 'Face')][Local: 'Face' = 'Verdana'][/If]
 [If: !(Local_Defined: 'Size')][Local: 'Size'= 1][/If]
 [If: !(Local_Defined: 'Color')][Local: 'Color' = 'black'][/If]
 [Return: ' ' +
 (Run_Children) + ' ']
[/Define_Tag]

A call to this tag appears like this. The -Face and -Color of the output are specified, but the -Size is left to the
default of 1.

[Ex_Font: -Face='Helvetica', -Color='red'] My Message [/Ex_Font]

�	 My Message

To use the contents of the container tag multiple times:

The following example creates a tag [Ex_Link] that creates a pair of HTML anchor tags with the contents of the
container used as both the URL to be followed and the text of the link. This could be used to automatically
create hyperlinks out of URLs contained in text. The tag does not require any parameters.

[Define_Tag: 'Link', -Namespace='Ex_', -Container]
 [Return: ' ' + (Run_Children) + ' ']
[/Define_Tag]

A call to this tag appears like this. The specified URL is included in the results twice.

[Ex_Link] http://www.lassosoft.com [/Ex_Link]

�	 http://www.lassosoft.com

To create a looping container tag:

The following example creates a tag that loops ten times repeating its contents. The -Looping keyword is used
in the [Define_Tag] tag to indicate that this is a looping tag rather than a simple container.

[Define_Tag: 'Loop10', -Namespace='Ex_', -Looping]
 [Local: #Output = '']
 [Loop: 10]
 [#Output += Run_Children]
 [/Loop]
 [Return: #Output]
[/Define_Tag]

6 9 5

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

A call to this tag appears like this. The specified contents of the tag is repeated ten times with the
[Loop_Count] updated each time.

[Ex_Loop10]
This is loop [Loop_Count]. [/Ex_Loop10]

�	
This is loop 1.

This is loop 2.
…

This is loop 10.

If the -Container keyword rather than the -Looping keyword had been used the tag still would have repeated its
contents ten times, but the [Loop_Count] would have returned the same value for each repetition.

Web Services, Remote Procedure Calls, and SOAP
Lasso supports remote procedure calls through the XML-RPC and Simple Object Access Protocol (SOAP)
standards. Both types of remote procedure calls allow one server on the Internet to call a function that
is located on another server. The parameters of the function call and the results of the function call are
transmitted between the servers using XML.

Custom tags can be automatically made available to remote servers by specifying the -RPC or -SOAP parameter
when the tag is created. Any tag which is specified as a remote procedure call will be accessible through
RPC.LassoApp which is located in the LassoStartup folder. The LassoApp handles all of the translation of
parameters and the return value to and from XML.

SOAP tags additionally require that each required and optional parameter be assigned a type using the -Type
parameter and that the return type of the tag be specified using the -ReturnType parameter. The parameter and
return types are used to automatically translate incoming SOAP requests into appropriate Lasso data types
and to properly describe the return value.

When called, remote procedure call tags will be executed using the permissions of the Anonymous user. If
the tags require additional permissions a username and password must be written into an [Inline] … [/Inline]
container within the tag or the tag must accept a username and password as parameters.

Tags are called within the context of a page load of the RPC.LassoApp. Tags can access global variables, but will
not be able to access any page variables from the page where they were defined. RPC and SOAP tags function
essentially as asynchronous tags described elsewhere in this chapter.

Remote procedure calls are well suited to a number of different applications. See the XML chapter in the
Lasso 8 Language Guide for more information. Some possible applications of remote procedure calls include:

	 •	Serving news stories to remote servers. For example, creating a system where other Web sites can show the
latest news stories automatically.

	 •	Performing administrative tasks on remote servers. Tags can be created which perform periodic
administrative tasks and then those tasks can be triggered using XML-RPC or SOAP calls.

	 •	Integrating with remote systems that communicate via XML-RPC or SOAP. Both Windows 2000 and Mac
OS X have systems for sending XML-RPC or SOAP calls and processing the results.

To create a remote procedure call tag:

Use the -RPC parameter in the opening [Define_Tag] tag. In the following example a method Example.Fortune
is created which returns a random message each time it is called. Since the tag will not have access to page
variables the array of messages is created inside the tag.

[Define_Tag: 'Example.Fortune', -RPC]
 [Local: 'Messages' = (Array: 'You will go on a long boat trip.',
 'You will meet a long lost friend',
 'You will strike it rich in the stock market')]
 [Local: 'Index' = (Math_Random: -Min=1, -Max=(#Messages->Size + 1))]
 [Return: #Messages->(Get: #Index)]
[/Define_Tag]

6 9 6

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

The tag can be called from a remote Lasso 8 server using the [XML-RPC] tags. A call to the
Example.Fortune remote procedure on the server at http://www.example.com/ would look like as follows.

[Variable: 'Result' = XML_RPC->(Call: -Method='Example.Fortune',
 -URI='http://www.example.com/RPC.LassoApp')]
[Variable: 'Result']

The result will be one of the messages from the Messages array.

�	 You will meet a long lost friend.

To create a remote procedure call tag with complex data types:

The previous example demonstrated how a remote procedure call tag could be created and called using a
simple tag which accepted no parameters and returned a string result. Remote procedure calls can be used
with any number of parameters including any of Lasso’s built-in data types such as array, map, boolean,
integer, decimal, etc.

In the following example a method Example.TopStories is created that returns an array of formatted URLs for
the top stories from a Web site. An optional -Count parameter allows the number of top stories to be returned
to be specified. The top stories are found by finding all records in the Stories table of the News database and
sorting the results first by Priority then by DateTime.

[Define_Tag: 'Example.TopStories', -Optional='Count']
 [Local: 'Results' = (Array)]
 [If: !(Local_Defined: 'Coun't)]
 [Local: 'Count' = 10]
 [/If]
 [Inline: -Findall,
 -Database='News',
 -Table='Stories',
 -SortField='Priority', -SortOrder='Descending',
 -SortField='DateTime', -SortOrder='Descending',
 -MaxRecords=#Count]

 [Records]
 [#Results->(Insert: '' + (Field: 'Headline') + '')]
 [/Records]

 [Return: #Results]
[/Define_Tag]

The tag can be called from a remote Lasso 8 server using the [XML-RPC] tags. A call to the
Example.TopStories remote procedure on the server at http://www.example.com/ which requests the top 3 stories
would look like as follows.

[Variable: 'Result' = (XML_RPC: (Array: -Count=3))->(Call:
 -URI='http://www.example.com',
 -Method='Example.TopStories')]
[Variable: 'Result']

The result will be an array of the top three stories from the database each formatted as a URL linking to the
page which contains the story.

�	 (Array: (Annual Results),
 (Shareholder Meeting),
 (Company Picnic!))

To create a SOAP tag:

Use the -SOAP parameter in the opening [Define_Tag] tag. In the following example a method Example.Repeat is
created which returns baseString repeated multiplier number of times. Both -Required parameters are followed by
-Type parameters and the -ReturnType for the tag is specified.

6 9 7

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

[Define_Tag: 'Example.Repeat', -SOAP,
 -Required='baseString', -Type='string',
 -Required='multiplier', -Type='integer,
 -ReturnType='string']
 [Return: (#baseString * #multiplier)]
[/Define_Tag]

The tag can be called from a remote server that supports SOAP.

Atomic Tags
Atomic tags only allow one instance of the tag to execute at a time. If the tag is called from multiple page
loads or threads then the latter calls will block automatically until the first instance of the tag has finished
running. Tags which access shared resources such as global variables can be made atomic to automatically
prevent collisions which may result if one instance of the tag modifies data that another instance is reading.

An atomic tag is defined by specifying the -Atomic keyword in the opening [Define_Tag] tag.

The following example uses a global to store an array. The tag inserts a value into the array, sorts the array,
and then returns the first value from the array.

[Global: 'Ex_Array' = (Array)]
[Define_Tag: 'Ex_StoreAndSort', -Required='Value', -Atomic]
 [(Global: 'Ex_Array')->(Insert: #Value)]
 [(Global: 'Ex_Array')->Sort]
 [Return: (Global: 'Ex_Array')->First]
[/Define_Tag]

If multiple instances of this tag executed at the same time then the inserts and sorts could be interleaved
so one instance of the tag inserted a value after the other instance had already sorted the array. The -Atomic
keyword ensures that each tag call completes before the next call to the same tag can begin.

The [Thread_Atomic] … [/Thread_Atomic] tags can also be used to define an atomic operation separate from a
custom tag. See the Threads chapter for more information.

Asynchronous Tags
Asynchronous tags are process tags that are executed in a separate thread from the main portion of the
page. Lasso does not have to wait for completion of an asynchronous tag before processing and serving the
remainder of the Lasso page in which the tag is called.

Since asynchronous tags usually finish executing after a page has been served to the site visitor they cannot
return values or modify the page variables for the Lasso page from which they were called.

Asynchronous tags are usually used in one of the following situations:

	 •	To perform database actions which are a side effect of loading a Lasso page, but the results of which are not
required for serving the file to the current site visitor.

	 •	To create a background process that periodically checks for certain conditions and performs a database
action or sends an email if that condition is met.

Asynchronous tags can be created using the [Define_Tag] … [/Define_Tag] tags. Newly defined tags will be
available below the point where they are defined in a Lasso page. They can be used as many times as needed.

Note: There is no control over when an asynchronous tag will be executed . Depending on how busy the server is
the tag may be executed immediately or may be delayed until after the current page is served to the client . The
order of execution of asynchronous tags should never be assumed .

6 9 8

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

Defining Tags
A new asynchronous tag is defined using the [Define_Tag] … [/Define_Tag] container tags. The opening [Define_Tag]
tag requires the name of the new substitution tag to be defined and the second parameter should be -Async
which specifies that the tag should be called asynchronously. All of the LassoScript code between the two tags
is stored and is executed each time the tag is called.

In the following example, a tag [Ex_SendEmail] is defined which sends an email to an example email address
for John Doe, johndoe@example.com. The tag is defined within a LassoScript and the second parameter is set to
True to ensure that the tag will be called asynchronously.

<?LassoScript
 Define_Tag: 'SendEmail', -Namespace='Ex_', -Async;
 Email_Send: -Host='mail.example.com',
 -To='johndoe@example.com',
 -From='lasso@example.com',
 -Subject='Sample Email',
 -Body='This email was sent from a custom tag.';
 /Define_Tag;
?>

This tag can be called like any process tag within the Lasso page where the tag is defined. The following code
calls this [Ex_SendEmail] so an email will be sent to johndoe@example.com each time the page with this code is
loaded in a Web browser.

[Ex_SendEmail]

The code immediately following this tag is executed immediately without waiting for the tag to complete. The
email will be queued for sending shortly after the page is finished executing and is served to the client.

Page Variables
None of the page variables which are defined when an asynchronous tag is called are available within the
asynchronous tag. The only variables which are available to a custom asynchronous tag are server-wide global
variables. Any values which are going to be used by an asynchronous tag should be set using the [Global] tag.

Asynchronous tags can use local variables internally in the same way as any custom tags. These variables will
only be available while the asynchronous tag is running and will be deleted automatically when it completes.

Calling Custom Tags
Only custom tags which are defined in the LassoStartup folder can be called by an asynchronous tag. Tags
which are defined in the same Lasso page as the asynchronous tag definition or call cannot be called by an
asynchronous tag.

Custom tags can be defined within the body of an asynchronous tag if needed. These custom tags will be
deleted as soon as the asynchronous tag finishes executing.

Background Processes
Asynchronous tags can be used to create background processes that continue to run independent of the
visitors to a Lasso-powered Web site. An asynchronous tag will continue executing until the end of the tag
body or a [Return] tag is reached. By putting an asynchronous tag into an infinite loop it will continue to run
until Lasso Service is quit.

Warning: There is no way to stop an asynchronous tag from executing once it is started . Care should be taken to
ensure that any background processes which are implemented with asynchronous tags are well behaved .

The [Sleep] tag can be used to pause execution of an asynchronous tag for a number of milliseconds. The
asynchronous tag consumes virtually no resources while it is paused.

Most background processes are started by a Lasso page within the LassoStartup folder. This ensures that the
background process runs from when Lasso Service starts up until it is quit.

6 9 9

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

To create a background process:

Place the following code in a Lasso page within the LassoStartup folder. This code will be executed the next
time Lasso Service is started.

Two global variables are created. Since these variables are created in the LassoStartup folder they can be read
and set from any page which is executed by Lasso. The first global variable Ex_Background_Pause can be used to
pause the background task if it is set to True. The second global variable Ex_Background_Kill can be used to kill
the background task if it is set to True.

[Global: 'Ex_Background_Pause' = False]
[Global: 'Ex_Background_Kill' = False]

These variables are not required to create a background task, but are useful for debugging and to kill a
runaway task. By setting the appropriate variable to True in any Lasso page the task can be paused or killed.

The task itself is defined in a [Define_Tag] … [/Define_Tag]. Notice that the naming convention has the name of
the tag which defines the task Ex_Background as the first part of the name of the variables associated with the
task. The task contains a while loop that checks the Ex_Background_Kill variable and a conditional that checks
the Ex_Background_Pause variable. After each execution, the tag pauses for 15 seconds (15000 milliseconds).

[Define_Tag: 'Background', -Namespace='Ex_', -Async]
 [While: (Global: 'Ex_BackGround_Kill) != True]
 [If: (Global: 'Ex_Background_Pause') != True)]
 … Perform Task …
 [/If]
 [Sleep: 15000]
 [/While]
[/Define_Tag]

The task is started by calling the [Ex_Background] tag immediately after it is defined. The task starts executing
and does not stop until Lasso Service is quit or the variable Ex_Background_Kill is set to True.

[Ex_Background]

It is important not to call the [Ex_Background] tag more than once or else multiple instances of the background
task will be created.

Background tasks can be made more robust by:

	 •	Adding a variable which is set when the background task is executed so it cannot be executed again.

	 •	Adding variables which control how long the background task sleeps.

	 •	Outputting to the console window with [Log: -Window] … [/Log] or to a log file in order to track the progress
of a background task.

Overloading Tags
Lasso provides the ability to create several versions of a tag each with a criteria that dictates when it should be
called. Tag overloading makes several advanced techniques possible.

	 •	Data Types – Different tags can be created which operate only when their parameters are of a certain
data type. The logic of each tag can be made simpler by removing laborious [Select] … [Case] … [/Select]
statements.

	 •	Redefine Existing Tags – Existing tags can be redefined with a specified criteria. The new version of the
tag will be called only when the criteria is met, but the old version of the tag is still available. The source
code for the original tag is not needed and even built-in tags can be redefined.

	 •	Debug Tags – Tags can be created which output debugging information when a page variable is set
appropriately. A page can be debugged and then all status messages can be suppressed by resetting the
variable.

Note: Tags must reference the proper namespace in order to overload an existing tag . For example, the [Client_IP]
tag is in the Client_ namespace so -Namespace='Client_' must be included in the new tag definition .

7 0 0

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

When a given tag is called, Lasso will check each tag with the same name in turn until the criteria of one of
the tags is met. A tag with no criteria will always execute. All built-in tags will always execute when called.

The -Priority and -Criteria parameters of the [Define_Tag] tag will be discussed followed by examples of how to use
those parameters to create systems of overloaded custom tags.

Important: In Lasso Professional 8 many built-in tags which comprise the core of the language can not be
overloaded . See the Lasso Reference for a complete list of tags that cannot be overloaded .

Priority
The placement of each custom tag in the list of tags in the calling chain can be specified using
the -Priority parameter of the [Define_Tag] tag. The following three priorities are available.

	 •	Replace – The tag will replace any tags of the same name. Only the newly defined tag will be called
when a tag of the given name is called. This allows existing tags to be completely redefined. Aliases and
synonyms of the replaced tag will not be redefined.

	 •	High – The tag will be placed at the front of the calling chain. The criteria of this tag will be checked first to
see if it can be called. If another tag is defined with high priority after this tag then that tag will actually be
checked first.

	 •	Low – The tag will be placed at the end of the calling chain. The criteria of this tag will be checked only
after all other tags have been checked. If another tag is defined with low priority after this tag then that tag
will actually be checked last. If the tag is placed after a built-in tag or a custom tag with no criteria then the
tag will never be called.

Note: By default, tags have no priority . They must have unique names and will be the sole tag in the calling
chain .

To replace a built-in tag:

A built-in tag can be replaced by creating a new tag that has a -Priority of Replace. This technique can be used
to redefine a custom tag or to redefine a built-in tag. The definition for the new tag must reference the
namespace in which the pre-existing tag is defined.

Note: LassoSoft does not support systems which have built-in tags replaced . It is always advisable to create new
tag names rather than redefining existing tags .

For example, the [Form_Param] tag could be redefined so it only retrieved parameters that were sent using the
Post method in an HTML form. This is done by inspecting the [Client_PostParams] tag and returning those items
from the array that match the parameter to the tag. Note that the proper Form_ namespace must be referenced
in order to redefine this built-in tag.

<?LassoScript
 Define_Tag: 'Param', -Namespace='Form_', -Priority='Replace', -Require='name';
 Local: 'id_array' = (Client_PostParams)->(Find: #name);
 Local: 'output' = '';
 Iterate: #id_array, (Local: 'id_item');
 #output += (Client_PostParams)->(Get: #id_item)->Second + '\r';
 /Iterate;
 #output->(RemoveTrailing: '\r');
 Return: #output;
 /Define_Tag;
?>

This tag can now be used anywhere on a page to get access to the parameters that were passed through a form
using the Post method. Since the tag uses the [Client_PostParams] tag it can even be used within nested [Inline]
tags.

If this tag is defined on a page then it will replace the [Form_Param] tag only until the end of the page. If this
tag is defined in the LassoStartup folder then it will replace the [Form_Param] tag for all users of the site. The
[Action_Param] tag is not modified by redefining the [Form_Param] tag even though they are aliases.

7 0 1

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

Criteria
If a tag has a -Criteria parameter defined then it will only be called when the specified criteria are met. If the
criteria are not met then the next tag in the calling chain will be consulted or an error will be generated.

The -Criteria parameter should be a conditional expression that returns True of False. It is called
within the environment of the tag being defined and has access to local variables created by the
-Required and -Optional parameters and to the [Params] array. The -Criteria parameter can also reference page
variables.

Required parameters specified by the -Required tag are checked prior to the -Criteria parameter. If a tag is missing
a -Required parameter then a syntax error is returned and no further checking of the tags in the calling chain
occurs. -Optional parameters should be used with appropriate an appropriate -Criteria expression to require
parameters only on certain tags within a calling chain.

To execute a tag when it is called with a parameter of a given type:

Create the tag with a -Required parameter and a -Criteria expression that checks the type of the local defined
by the -Required parameter. The following tag prints a formatted message only when it is called with a string
parameter.

[Define_Tag: 'Print', -Namespace='Ex_',
 -Priority='High',
 -Required='myParam',
 -Criteria=(#myParam->Type == 'string')]
 [Return: '(String: \'' + #myParam + '\')]
[/Define_Tag]

When this tag is called with a string parameter the formatted output is generated, otherwise a syntax error is
generated.

[Ex_Print: 'Text'] � (String: 'Text')

[Ex_Print: 123.456] � Syntax Error

Now, an additional tag can be added with the same name that executes when it is called with a parameter of
a different data type. The following version of [Ex_Print] will be called when the parameter is of type decimal.
The -Priority of this tag is set to High ensuring that it is called before the other version of [Ex_Print] in the calling
chain.

[Define_Tag: 'Print', -Namespace='Ex_',
 -Priority='High',
 -Required='myParam',
 -Criteria=(#myParam->Type == 'decimal')]
 [Return: '(Decimal: ' + #myParam + ')]
[/Define_Tag]

When this tag is called with a decimal parameter the formatted output is generated. When it is called with a
string parameter the prior version of the tag is used and its formatted output is generated. If the tag is called
with a parameter of a different data type then a syntax error is generated.

[Ex_Print: 'Text'] � (String: 'Text')

[Ex_Print: 123.456] � (Decimal: 123.456)

[Ex_Print: 123] � Syntax Error

Additional tags can be created for each of the built-in data types: arrays, dates, maps, pairs, integers, boolean
values, etc.

Rather than returning a syntax error when an unknown data type is specified as a parameter to the tag, a
version of the tag can be created that accepts parameters of any type. The following version of [Ex_Print] is used
for unknown data types. The -Priority is set to Low ensuring that this version of the tag is checked after all other
versions of [Ex_Print] in the calling chain.

7 0 2

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

[Define_Tag: 'Print', -Namespace='Ex_',
 -Priority='Low',
 -Required='myParam']
 [Return: '(Unknown: ' + (String: #myParam) + ')]
[/Define_Tag]

When this tag is called with a parameter of type date for which no individual version of the tag has been
created the Unknown output is generated.

[Ex_Print: (Date)] � (Unknown: 5/15/2002 12:34:56)

The real power of this type of system of tags—which are only used when called with a parameter of a certain
data type—is that it can be expanded by third parties to include their own custom data types. For example, if
a new data type is created that represents currency then a new version of the [Ex_Print] tag could be created as
well. The end-user will see that [Ex_Print] now works for the currency data type and doesn’t have to be aware of
the mechanism which has been used to extend this tag to the additional data type.

Constants
The [Define_Constant] tag allows a constant literal value to be declared in much the same way as a custom tag. A
constant value works just like a tag except that when the name of the constant is referenced its value is simply
returned.

Lasso defines built-in constants for many commonly used parameter values such as All, Eq, Neq, etc.

Table 3: [Define_Constant] Tag

Tag Description

[Define_Constant] Defines a constant. Requires two parameters: the name of the constant to be
defined and the value for the constant. A namespace can also be specified by
inculding a -Namespace parameter between the name and value parameters.

To create a constant:

Use the [Define_Constant] tag. The defined constant can then be referenced as if it were a custom tag that
returns the constant value or can be used as a parameter value without quotes. For example, the following
code defines a constant MySiteName which is then output.

[Define_Constant: 'MySiteName', 'www.example.com']

Welcome to [MySiteName]! Enjoy your stay!

➜	 Welcome to www.example.com! Enjoy your stay!

Libraries
Libraries can be used to package custom tags and custom types into a format which is easy for any Lasso
developer to incorporate into a Lasso-powered Web site.

The following types of libraries can be created:

	 •	On-Demand Tag Library – A set of custom tag and custom type declarations can be stored in a Lasso page
or LassoApp and placed in the LassoLibraries folder in the Lasso Professional 8 application folder. The Lasso
page or LassoApp should have the same name (before the .Lasso or .LassoApp file suffix) as the namespace
of the tags defined within. Sub-folders can be used to define nested namespaces.

	 •	Library Lasso Page – A set of custom tag and custom type declarations can be stored in a Lasso page and
then included in any other Lasso page using the [Library: 'library.lasso'] tag. This is a good way to create and
use a library file whose defined tags and types will only be needed on a few pages in a site.

7 0 3

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

	 •	LassoStartup Lasso Page – A set of custom tag and custom type declarations can be stored in a Lasso
page placed within the LassoStartup folder in the Lasso Professional 8 application folder. After Lasso Service
is restarted all tags, types, and page variables which are defined within the Lasso page will be available to
all Lasso pages which are executed on the server.

7 0 4

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 7 – C u s t o m t a g s

58
Chapter 58

Custom Types

This chapter introduces custom data types and shows how they can be created using Lasso tags.

	 •	Overview introduces the concepts behind custom data types.

	 •	Custom Types describes how to create new data types.

	 •	Member Tags describes how to create member tags for a custom data type.

	 •	Prototypes describes how to use prototypes to increase the speed of custom data types.

	 •	Callback Tags describes how to use callback tags to perform instance initialization, how to store custom
data in serialized types, and how to process arbitrary member tag names.

	 •	Symbol Overloading describes how to use callback tags to overload the assignment, comparison, and
mathematical operation symbols for any data type.

	 •	Inheritance describes how custom data types can inherit instance variables and member tags from other
custom data types or from built-in data types.

	 •	Libraries describes how to package sets of custom types for distribution.

Overview
Lasso Professional 8 allows Web developers to extend LassoScript by creating custom data types programmed
using Lasso tags.

Custom data types have the following features:

	 •	Tags for custom types operate just like built-in member tags. They can be used in nested expressions, return
data of any type, and allow the use of encoding keywords.

	 •	Custom types are fully object-oriented. Custom types can inherit properties from other custom types.

	 •	Custom types can provide support for the built-in comparison symbols and automatic casting.

	 •	They can be created in any Lasso page and used instantly.

	 •	They are written in LassoScript. No programming experience or knowledge of a programming language
other than LassoScript is required.

	 •	They can be collected into libraries of tags which can be loaded into any Lasso page using the [Library] tag.

	 •	They can be defined in a Lasso page or library within the LassoStartup folder, making them available to all
pages processed by Lasso.

Naming Conventions
Lasso Professional 8 has support for tag namespaces. All custom types which are created by a developer
should be defined in a namespace unique to the developer. For example, if LassoSoft was providing a custom
type which implemented POP support it might be placed in the LS_ namespace and named [LS_Pop]. All of
the types in this guide will be defined in the Ex_ namespace meaning Example.

7 0 5

L a s s o 8 . 5 L a n g u a g e g u i d e

The member tags of a custom type do note need a prefix since member tags only need to be unique within
each data type. In fact, it is recommended to use the same names as built-in member tags for custom member
tags if the functionality is equivalent. For example, a custom data type might implement [Type->Get] and
[Type->Size] member tags.

If either a member tag or instance variable of a custom tag starts with an underscore then the tag or variable
will be transient in the data type. Transient member tags and instance variables will not be copied when the
type is assigned to a different variable or serialized.

Error Reporting
Lasso has a flexible error reporting system which can be used to control the amount of information provided
to the site visitor when an error occurs. Since custom types are self-contained it is often desirable to develop
and debug them independent of the site on which they are used.

The [Lasso_ErrorReporting] tag can be used with the -Local keyword to set the error reporting level for each
custom member tag. Using this tag the error level can be set to Full while developing a tag in order to see
detailed error messages.

[Lasso_ErrorReporting: 'Full', -Local]

Once the custom type is debugged and ready for deployment the error reporting level can be adjusted to
None in order to effectively suppress any details about the coding of the custom tag from being reported.

[Lasso_ErrorReporting: 'None', -Local]

See the Error Controls chapter in the Language Guide for additional details about the [Lasso_ErrorReporting] tag
and other error control tags.

Custom Types
Custom data types can be created in LassoScript using the [Define_Type] … [/Define_Type] tags. Newly defined
types will be available below the point where they are defined in a Lasso page.

See the section on Libraries for information about how to create libraries of types, load types in LassoStartup,
and create types which can be used by any Lasso page.

Table 1: Tags for Creating Custom Data Types

Tag Description

[Define_Type] … [/Define_Type] Defines a new data type. Requires a single parameter, the name of the type to be
defined. Additional string parameters list the custom types which this type inherits
from. Optional -Namespace parameter defined what namespace the custom type
should be placed in. Optional (but recommended) -Prototype parameter specifies
that the type should be defined as a prototype. Optional -Description provides a
description of the type.

[Define_Tag] … [/Define_Tag] Defines a new new member tag within a type definition.

[Local] Sets or retrieves the value of a member variable within a custom type definition.

[Local_Defined] Checks to see if a member variable has been defined within a custom type
definition.

[Locals] Returns a map of all the member variables which have been defined within a
custom type definition.

[Params] Returns an array of all the parameters which were passed to the custom tag.

[Private] … [/Private] Surrounds member tags and variables which are private to the type instance.

[Self] Returns a reference to the current data type instance.

[Self->Parent] Returns a reference to the parent type for the current data type instance. For use
within custom type declarations with inheritance.

7 0 6

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 8 – C u s t o m t y p e s

Note: In addition to the listed tags all of the tags which are used for creating custom tags are used when
creating member tags . A custom type shares many characteristics with a custom tag including namespace, calling
methods, etc . A good understanding of custom tags (described in the prior chapter) is essential to understanding
custom types .

Defining a Type
A new data type is defined by specifying its name in the opening [Define_Type] tag. The body of the
[Define_Type] … [/Define_Type] tags contains code which will be executed each time a new instance of the data
type is created.

For example, a new data type Ex_Dollar could be created which will store dollar amounts. The basic type
definition is as follows. Each of the parts of this definition are discussed in more detail in the sections that
follow.

[Define_Type: 'Dollar', -Namespace='Ex_']
 [Local: 'Amount' = 0]
 [Define_Tag: 'onCreate', -Optional='Amount']
 [If: (Local_Defined: 'Amount')]
 [Self->'Amount' = (Decimal: #Amount)]
 [Self->'Amount'->(SetFormat: -DecimalChar=',', -Precision=2)]
 [/If]
 [/Define_Tag]

 … Member Tags …

[/Define_Type]

The [Define_Type] … [/Define_Type] tags define a tag with the same name as the data type. Each time a new
instance of [Ex_Dollar] is created the [Ex_Dollar->onCreate] tag is called to initialize the instance.

The code within [Define_Type] … [/Define_Type] should be used only to define instance variables and to create
member tags. The code within [Ex_Dollar->onCreate] should be used to create a specific instance of the t ype
based on the parameters passed to the [Ex_Dollar] tag.

Instance Variables
A data type can contain definitions for local variables within the [Define_Type] … [/Define_Type] tags. These local
variables are called instance variables since their values are stored separately for each instance of the data type
which is created.

In the example above, the local variable Amount is created. This variable will store a dollar amount, the current
value of the data type. Each time a new instance of [Ex_Dollar] is created, a new instance of the Amount instance
variable will be created. For example, the following two lines create two variables each of which stores a value
of type Ex_Dollar. Each stores its own independent Amount.

[Variable: 'Price' = (Ex_Dollar: 10)]

[Variable: 'Tax' = (Ex_Dollar: 0.93)]

Instance variables can be referenced explicitly by name using the member symbol -> with the name
of the instance variable. The values for the Amount instance variable can be retrieved from each of the
Ex_Dollar amounts defined above using the following code.

[(Variable: 'Price')->'Amount'] ➜ 10.00

[(Variable: 'Tax')->'Amount'] ➜ 0.93

The quotes around the variable name Amount can be omitted if the type does not define a tag with the same
name as the member variable. Usually, $Price->'Amount' is equivalent to $Price->Amount however for clarity it is
best to use quotes around the member variable name when possible.

7 0 7

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 8 – C u s t o m t y p e s

Private Variables
The [Private] …[/Private] container tags can be used to designate one or more instance variables as private to the
type. These variables can only be accessed from one of the member tags of the type.

Important: The properties map of the data type must be frozen when private instance variables are used .
Freezing the properties map ensures that no additional instance variables or member tags can be added to the
data type after it is created .

The example above can be rewritten so that Amount is a private variable. The variable can be accessed as
follows using [Self->'Amount'], but cannot be accessed using (Variable: Price')->'Amount'.

[Define_Type: 'Dollar', -Namespace='Ex_']
 [Private]
 [Local: 'Amount' = 0]
 [/Private]
 [Define_Tag: 'onCreate', -Optional='Amount']
 [If: (Local_Defined: 'Amount')]
 [Self->'Amount' = (Decimal: #Amount)]
 [Self->'Amount'->(SetFormat: -DecimalChar=',', -Precision=2)]
 [/If]
 [Self->Properties->First->FreezeValue]
 [Self->Properties->Second->FreezeValue]
 [/Define_Tag]

 … Member Tags …

[/Define_Type]

Private variables are not output using the [Null->Properties] or [Null->Dump] tags, are not output when a data type
is serialized, and are not accessible by sub-types of the current type. The [Null->onSerialize] and [Null->onDeserialize]
callbacks could be used to encrypt private variables and decrypt when the type is restored.

Transient Variables
Instance variables which start with an underscore are transient variables that will not be copied when the
instance is assigned to another variable or serialized. Transient variables should only be used to store static
data that does not need to be propagated to new instances of the data type and does not need to survive
being stored in a session and retrieved.

The [Null->onSerialize] and [Null->onDeserialize] callbacks can be used to clean up or close any resources referenced
by transient variables and to set them back up when the type is restored. The [Null->onAssign] callback can be
used similarly when an instance is copied to another variable.

Serialization
Lasso serializes custom data types without member tags. When Lasso deserializes a type it creates a new
instance of the type and copies all the data members from the serialized data into this new instance. A
custom type must be defined on the page before it is deserialized.

	 •	Custom types which are stored in sessions must be defined before the [Session_Start] tag is called which
implicitly deserializes the stored custom types.

	 •	Custom types which are stored in database fields must be defined before the [Null->Unserialize] tag is called.

The [Null->onSerialize] and [Null->onDeserialize] callbacks can be used for any special pre- or post-processing
required before and after serializing a custom type.

7 0 8

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 8 – C u s t o m t y p e s

Member Tags

Built-In Member Tags
Each custom type can automatically make use of any of the tags of the null data type. These tags are detailed
in Table 2: Built-In Tags. These tags are used by Lasso to provide information about data of any type and
to provide efficient storage for custom data types. None of the tags in this table should be overriden by the
custom data type.

In addition to these built-in member tags there are several tags that are defined as placeholders on the null
data type. The [Null->Size] and [Null->SetFormat] tags are defined for every data type. [Null->Size] always returns
0 and [Null->SetFormat] is a placeholder that returns no value if called. Either of these tags can be overridden
using custom member tags.

Note: It is desirable for custom data types to create custom [Type->Get] and [Type->Size] member tags so the
[Iterate] … [/Iterate] tags will function properly .

Table 2: Built-In Member Tags

Tag Description

[Null->DetachReference] Detaches the variable from the instance of the data type.

[Null->FreezeType] Freezes the type of a variable. After calling this tag the current variable cannot be
cast to another data type.

[Null->FreezeValue] Freezes the value of a variable, essentially creating a read-only variable. After
calling this tag the current variable cannot have its value changed.

[Null->FullType] Returns the full type name for an instance including namespace.

[Null->Invoke] This member tag normally calls the creator of the data type, but can be
overridden to provide type specific behavior.

[Null->IsA] Accepts a single parameter which is the name of a type. Returns True if the
parameter matches the name of the current data type or any of its parent data
types.

[Null->Parent] Returns a references to the parent type of the current data type instance.

[Null->Properties] Returns a pair which contains a map of all the instance variables and a map of
all the member tags defined for the data type. Private instance variables and
member tags are not returned by this tag.

[Null->RefCount] Returns the number of variables that currently point at the instance of the data
type.

[Null->Serialize] Returns a bit-stream representation for the data type. This tag can be used
to store a custom data type in a database or to pass it from page to page as
an action parameter. Note that private and transient instance variables are not
automatically serialized.

[Null->Type] Returns the type which was specified when the custom type was created.

[Null->Unserialize] Accepts a single parameter which is a bit-stream created by [Null->Serialize].
This tag modifies the variable on which it is called by setting it to the custom data
type represented by the bit-stream parameter.

Custom Member Tags
Each custom type can define member tags which can be called to modify the value stored in an instance of
the custom type or to output values from an instance of the custom type.

Member tags are defined within the [Define_Type] … [/Define_Type] tags for the custom type using
[Define_Tag] … [/Define_Tag] tags. The syntax for creating member tags is the same as that for creating custom
tags. However, member tags cannot be called asynchronously. The [Define_Tag] tag for a member tag should
never have -Async as the value for the second parameter.

7 0 9

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 8 – C u s t o m t y p e s

The [Self] tag allows member tags to reference the current instance of the data type. This allows member tags
to call other defined member tags or to set or retrieve values stored in instance variables. See the example
of defining a custom member tag below for more information. The [Self] tag also allows access to instance
variables that are stored within the custom data type.

Custom member tags which are named starting with an underscore are transient member tags. These tags will
not be copied when the data type instance is copied to another variable or serialized. The [Null->onAssign] and
[Null->onDeserialize] callbacks can be used to redefine transient member tags.

To define custom member tags:

Two custom tags will be defined for the Ex_Dollar custom type. The [Ex_Dollar->Set] tag will accept a single
parameter, cast it to decimal, and store it in the Amount instance variable. The [Ex_Dollar->Get] tag will simply
return the value of the Amount instance variable formatted as a dollar amount.

	 •	The [Ex_Dollar->Set] member tag is defined within the body of the [Define_Type] … [/Define_Type] tags. It checks
that there is at least one parameter in the [Params] array. The [Self] tag is a reference to the current instance of
the Ex_Dollar data type, so the (Self->'Amount') statement is a reference to the Amount instance variable.

<?LassoScript
 Define_Tag: 'Set';
 If: (Params) && ((Params)->Size > 0);
 (Self->'Amount') = (Decimal: (Params)->(Get:1));
 /If;
 /Define_Tag;
?>

	 •	The [Ex_Dollar->Get] member tag is defined within the body of the [Define_Type] … [/Define_Type] tags. It
appends a dollar sign $ to the value in the Amount instance variable and returns the value. The [Self] tag is a
reference to the current instance of the Ex_Dollar data type, so the (Self->'Amount') statement is a reference to
the Amount instance variable.

<?LassoScript
 Define_Tag: 'Get';
 Return: '$' + (Self->'Amount');
 /Define_Tag;
?>

To call a custom member tag:

Custom member tags are called in the same way that the member tags of the built-in data types are called.
The Ex_Dollar type has two member tags [Ex_Dollar->Get] and [Ex_Dollar->Set]. They are used to set and retrieve
dollar amounts in the following example.

[Variable: 'Price' = (Ex_Dollar: 100)]

[(Variable: 'Price')->Get]
[(Variable: 'Price')->(Set: 19.95)]

[(Variable: 'Price')->Get]

➜	
$100.00

$19.95

Private Member Tags
The [Private] …[/Private] container tags can be used to designate one or more member tags as private to the type.
These member tags can only be accessed from one of the member tags of the type. Private member tags are
not output using the [Null->Properties] or [Null->Dump] tags, are not output when a data type is serialized, and are
not accessible by sub-types of the current type.

Important: The properties map of the data type must be frozen when private instance variables are used .
Freezing the properties map ensures that no additional instance variables or member tags can be added to the
data type after it is created . See the example in the Private Variables section above .

7 1 0

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 8 – C u s t o m t y p e s

Atomic Member Tags
Member tags which are created with the -Atomic keyword will hold a lock on the type instance. Only
one atomic member tag will be able to execute at a time per instance. This allows access to the instance
variables within a type to be controlled. However, an atomic custom tag outside of the type (or
[Thread_Atomic] … [/Thread_Atomic] tags) must be used in order to control access to a shared resource. See the
prior chapter for more information about atomic tags.

Prototypes
Lasso can use type prototypes to dramatically increase the performance of custom types. When Lasso creates a
new instance of a type it normally runs all of the code within the [Define_Type] … [/Define_Type] tags in order to
create instance variables and member tags. When the -Prototype keyword is used Lasso runs the code with the
type definition once and stores a reference to the pre-compiled prototype. This prototype is copied each time
an instance of the type is created.

Any data type which follows these guidelines can be used as a prototype. It is recommended that all custom
data types be created as prototypes.

	 •	The custom type definition must only contain [Local] tags to define instance variables and
[Define_Tag] … [/Define_Tag] tags to define member tags within the [Define_Type] … [/Define_Type] tags.

	 ˆ•	The -Prototype keyword must be referenced in the opening [Define_Type] tag.

[Define_Type: 'Ex_MyPrototype', -Prototype]
 [Local: 'MemberVariable' = '']
 [Define_Tag: 'MemberTag']
 … Code can reference local, page, or global variables …
 [/Define_Tag]
[/Define_Type]

In addition, it is possible to use the [Define_Prototype] tag to create a prototype out of any data type. This tag
takes two parameters: the name of the desired prototype and a reference to a data type which will be used
as the prototype. The data type is copied into the tag map as a prototype. Any time the prototype name is
referenced a copy of the prototype will be made.

Table 3: Prototype Tag

Tag Description

[Define_Prototype] Installs a prototype in the tag map. Requires two parameters: the name by which
the prototype will be referenced (the tag name) and a reference to the data
type that will be copied as the prototype. A namespace can also be specified by
inculding a -Namespace parameter between the name and reference parameters.

For example a map could be created that had some pre-defined values which would be used over and over
again. This map can be installed as a prototype and then referenced as if it were a custom type.

[Var: 'Prototype_Map' = (Map: 'First_Name' = '', 'Last_Name'='')]
[Define_Prototype: 'Ex_Person', $Prototype_Map]

[Var: 'myMap' = (Ex_Person)]

Callback Tags
Each custom type can define a number of callback tags using the [Define_Tag] … [/Define_Tag] tags within the
[Define_Type] … [/Define_Type] definition for the type. These callback tags will be executed with appropriate
parameters when the data type is cast to another type, a new instance is created, or an instance is destroyed.

7 1 1

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 8 – C u s t o m t y p e s

Table 3: Callback Tags details the tags that are available. These tag names are reserved. No member tags
with these names should be defined. These tags are not normally called by a Lasso developer, they are called
automatically by Lasso in the specified situation. Although there is no protection to prevent a Lasso developer
from calling these tags directly, results should be considered undefined if they do.

The primary callback tags are shown in Table 3: Callback Tags. Additional callback tags allow the overriding
of built-in symbols. These tags are described in the next section.

Table 4: Callback Tags

Tag Description

[Null->onConvert] Called when the instance is cast to a built-in data type. Accepts a single
parameter, the name of the type to which the value should be converted (string,
integer, or decimal). The return value should be the converted value or Null if no
conversion was possible.

[Null->onCreate] Called immediately after a new instance is created. This tag has full access to the
variables and member tags defined within the [Define_Type] … [/Define_Type]
tags.

[Null->onDestroy] Called before the custom type is destroyed, usually at the end of the current
Lasso page or tag execution.

[Null->onSerialize] Called when the custom type is serialized. The return value is stored with the
serialized data and passed to [Null->onDeserialize].

[Null->onDeserialize] Called when the custom type is deserialized. The return value of [Null-
>onSerialize] is passed as the first parameter to this tag.

[Null->_UnknownTag] Called when an unknown member tag is referenced. The [Tag_Name] tag can be
used to decide what tag name was referenced.

Note: These callback tags are not included in the Lasso tag list . They are intended to be called by Lasso
automatically rather than being called like other member tags .

onCreate Callback
The [Null->onCreate] callback tag is called after a new instance of a type is created. It is called once for each
instance of a type with any parameters that were passed to the tag that created the type.

For example, when the tag [Ex_Dollar] is used to create a new instance of the dollar type the following steps are
performed.

 1 The code within the [Define_Type] … [/Define_Type] container is executed, creating all the custom tags and
instance variables for the type.

 2 The [Ex_Dollar->onCreate] tag is called with the parameters passed to the [Ex_Dollar] tag to set up the particular
instance of the type.

Since the callback tag is called after the code within the [Define_Type] … [/Define_Type] container is processed, the
[Null->onCreate] tag has access to the [Self] tag and to each of the member tags which have been defined for the
current type.

Order of operation:

A new instance of a custom type is created by calling the creator tag for the type which has the same name as
the type. For example, to create a new Ex_Dollar type the [Ex_Dollar] tag must be called.

[Ex_Dollar: 10]

 1 The body of the [Define_Type] … [/Define_Type] tags for the Ex_Dollar type are executed. Local instance variables
are defined and all member tags are defined.

 2 If the [Ex_Dollar->onCreate] callback tag is defined then it is called.

7 1 2

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 8 – C u s t o m t y p e s

To define a [Null->onCreate] callback tag:

The Ex_Dollar data type is too simple to require an [Ex_Dollar->onCreate] callback tag. All the initialization which
is needed is performed in the creator tag. However, for debugging purposes it might be nice to know each
time an instance of the new data type is created. The following [Ex_Dollar->onCreate] tag logs the current value
of the instance variable Amount each time a new instance of the data type is created.

[Define_Tag: 'onCreate']
 [Log: -Window] Create Ex_Dollar: [Self->'Amount'].[/Log]
[/Define_Tag]

It is generally possible to modify a custom type instance after it has been created by modifying the maps
provided by the [Null->Properties] tag. For example, instance variables and member tags can be inserted into a
single type instance. This is often undesirable because it allows one custom type instance to be different from
another, not just in the data it stores, but in the actual instance variables and member tags it defines! The
two freeze value tags shown below can be used in the [Null->onCreate] callback in order to lock the data type
instance once it is created.

[Define_Tag: 'onCreate']
 … Perform Initialization …
 [Self->Properties->First->FreezeValue]
 [Self->Properties->Second->FreezeValue]
[/Define_Tag]

onConvert Callback
The [Null->onConvert] callback tag is called when an instance of a custom type is cast to a built-in data type. This
tag will be called when an instance of a custom type is used in an expression with built-in data types that
requires an integer, decimal, or string value. Each custom type must support being cast to the string data type
and should support being cast to the decimal or integer data types if possible.

The [Null->onConvert] callback is called with the name of the type to which the current instance is being
converted (either string, integer, or decimal). If the name of the type is not recognized then the [Null->onConvert]
tag should return Null. Lasso will attempt to convert the custom data type using another method or will throw
an error.

To define a [Null->onConvert] callback tag:

The [Ex_Dollar->onConvert] callback tag is called when an Ex_Dollar amount is cast to a built-in data type. If
the value is cast to a decimal or an integer then the callback tag will cast the value in the Amount instance
variable to the appropriate data type. If the value is cast to a string then the [Ex_Dollar->Get] member tag which
was defined previously will be called. Otherwise, the callback tag will return Null instructing Lasso that the
conversion is not supported.

<?LassoScript
 Define_Tag: 'onConvert';
 Local: 'Type' = (Params)->(Get: 1);
 If: (Local: 'Type') == 'String';
 Return: (Self->Get);
 Else: (Local: 'Type') == 'Integer';
 Return: (Integer: (Self->'Amount'));
 Else: (Local: 'Type') == 'Decimal';
 Return: (Decimal: (Self->'Amount'));
 /If;
 Return Null;
 /Define_Tag;
?>

In the following code a variable Price is set to a value of type Ex_Dollar. Then that variable is cast to different
data types.

7 1 3

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 8 – C u s t o m t y p e s

[Variable: 'Price' = (Ex_Dollar: 19.95)]

[String: (Variable: 'Price')]

[(Integer: (Variable: 'Price'))]

[(Decimal: (Variable: 'Price'))]

➜	
$19.95

20

19.95

onDestroy Callback
The [Null->onDestroy] callback tag is the last member tag called for each instance of a custom type. The
[Null->onDestroy] callback tag allows any cleanup code that needs to be performed to be executed before the tag
is purged from memory. The [Null->onDestroy] tag is called once for each instance of a custom type.

The [Null->onDestroy] callback tag is called in the following instances.

	 •	If a custom type literal is created and not stored in a variable, the instance is destroyed as soon as the
current tag completes.

[(Ex_Dollar: 10.0)]

	 •	If a custom tag is created within the [Define_Tag] … [/Define_Tag] tags of a custom tag declaration and stored in
a local variable then the instance is destroyed as soon as the custom tag completes.

	 •	If a custom tag is created within the [Define_Type] … [/Define_Type] tags of a custom type or is stored in an
instance variable within a custom type then the instance is destroyed as soon as the custom type within
which it is stored is destroyed.

	 •	If a custom type is stored within a page variable then it will be destroyed as soon as the page finishes
executing, but before it is served to the site visitor.

To define a [Null->onDestroy] callback tag:

The Ex_Dollar data type is too simple to require an [Ex_Dollar->onDestroy] callback tag. The instance variable
Amount and each of the member tags will be destroyed automatically by Lasso. However, for debugging
purposes it might be nice to know each time an instance of the new data type is destroyed. The following
[Ex_Dollar->onDestroy] tag logs the current value of the instance variable Amount each time a new instance of the
data type is destroyed.

[Define_Tag: 'onDestroy']
 [Log: -Window] Destroy Ex_Dollar: [Self->'Amount'].[/Log]
[/Define_Tag]

Unknown Tag Callback
The [Null->_UnknownTag] callback tag is called when a tag that does not exist for the current data type is
referenced. This callback tag allows a custom data type to respond to member tags which are not explicitly
created. The tag name which was called can be retrieved using the [Tag_Name] tag.

None of the callback tags are ever passed to the [Null->_UnknownTag] callback. Callback tags must be defined
explicitly in order to be implemented.

Order of operation:

When a member tag is called on a custom type:

 1 If a member tag with that name is defined then it is executed.

 2 If no member tag with that name is defined then the [Null->_UnknownTag] callback is executed.

 3 If an instance variable with that name is defined then its value is returned.

 4 If the unknown tag callback is not defined then an error is returned.

7 1 4

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 8 – C u s t o m t y p e s

Note: If desired the _UnknownTag callback can check the properties of the type and return a reference to a
member variable . This allows the _UnknownTag callback to simulate the built-in behavior of returning an instance
variable even when it is referenced without quotes .

To define a [Null->_UnknownTag] callback tag:

The Ex_Dollar data type could implement a conversion to different currencies using the unknown tag callback.

Assume that there is a tag [Currency_Convert] which accepts a value, a -From parameter with the code for what
currency to convert from, and a -To parameter with the code for what currency to convert to. The tag uses data
from a site on the Internet to get accureate real-time conversion rates.

Rather than coding in all currency codes explicitly and unknown tag callback can be used to pass any
unknown member tags to the [Currency_Convert] tag. An error will be returned if the tag name is not a valid
currency code.

[Define_Tag: '_UnknownTag']
 [Local: 'Code' = (Tag_Name)]
 [Local: 'Result' = (Currency_Convert: (Decimal: Self->'Amount'),
 -From='USD', -To=#Code)]
 [Return: (Decimal: #Result)]
[/Define_Tag]

The following code would now work to convert the U.S. currency represented by the [Ex_Dollar] type to U.K.
Pounds represented by UKP.

[Variable: 'Price' = (Ex_Dollar: 19.95)]

[(Variable: 'Price')->(UKP)]

➜	
31.24

Symbol Overloading
Lasso allows complex expressions using math and string symbols to be specified as tag parameters. In
addition, a set of assignment symbols allow a variable to be modified in place without returning a value. A
list of common symbols is shown in Table 4: Overloadable Symbols.

Each data type can assign its own meanings to each of the symbols that Lasso provides. For example, the
built-in integer and decimal data types use the + symbol for addition while the built-in string data type
uses the + symbol for concatenation. In general it is wisest to match the common meanings of the symbols
whenever possible. Ideally, the user will be able to use each data type’s custom symbols interchangeably with
the symbols provided by the built-in data types.

The meaning of corresponding assignment symbols, unary symbols, and binary symbols should be
compatible whenever possible. The operation [(Variable: 'myVariable') += 'Value'] should be the same as the
operation [Variable 'myVariable' = $myVariable + 'Value'].

Table 5: Overloadable Symbols

Symbol Description

+ Unary/Binary symbol for addition or concatenation.

- Unary/Binary symbol for subtraction or deletion.

* Binary symbol for multiplication or repetition.

/ Binary symbol for division.

% Binary symbol for modulus.

++ Unary increment symbol prefix or postfix.

-- Unary decrement symbol prefix or postifx.

== Binary symbol for equality. Returns boolean.

!= Binary symbol for inequality. Returns boolean.

> Binary symbol for greater than. Returns boolean.

7 1 5

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 8 – C u s t o m t y p e s

>= Binary symbol for greater or equal. Returns boolean.

< Binary symbol for less than. Returns boolean.

<= Binary symbol for less or equal. Returns boolean.

>> Binary symbol for contains. Returns boolean.

= Assignment symbol.

+= Addition assignment symbol.

-= Subtraction assignment symbol.

*= Multiplication assignment symbol.

/= Division assignment symbol.

%= Modulus assignment symbol.

Each of these symbols can be redefined or overloaded for a custom data type. The data type of the left
parameter to a binary operator determines which tag is used to perform the operation. If a data type does not
support the symbol then the parameter is cast to string and the string symbol is used instead.

Other symbols such as $, #, @ cannot be overloaded. These are core language constructs. The logical symbols
||, &&, and ! cannot be overloaded, but a custom behavior can be defined when a custom data type is cast to
boolean.

Callback Tags
Each custom type can define a number of callback tags using the [Define_Tag] … [/Define_Tag] tags within the
[Define_Type] … [/Define_Type] definition for the type. These callback tags will be executed with appropriate
parameters when the data type is used in a complex expression.

Table 5: Comparison Callback Tags, Table 6: Symbol Callback Tags, and Table 7: Assignment Callback
Tags detail the tags that are available. These tag names are reserved. No member tags with these names
should be defined. These tags are not normally called by a Lasso developer, they are called automatically by
Lasso in the specified situation. Although there is no protection to prevent a Lasso developer from calling
these tags directly, results should be considered undefined if they do.

Table 6: Comparison Callback Tags

Tag Description

[Null->onCompare] Called when the current instance is used in a comparison expression. Accepts
a single parameter, the value to be compared against. Should return 0 if the
parameter is equal to the current instance, a positive number if the parameter is
greater, or a negative number if the parameter is less. Called for the ==, !=, <, <=,
>, >= symbols.

[Null->>>] Called when an instance is used as the left parameter of a contains symbol.
Accepts a single parameter which is the right parameter of the symbol. This tag
should return True if the right parameter is contained in the current instance.

Note: These callback tags are not included in the Lasso tag list . They are intended to be called by Lasso
automatically rather than being called like other member tags .

onCompare Callback
The [Null->onCompare] callback tag is called when an instance of a custom type is used as the left parameter of a
comparison symbol ==, !=, <, <=, >, or >=. The callback tag is called with the value of the right parameter of the
symbol. The result of the tag should be one of the following.

	 •	Equality – If the value of the right parameter is equal to the value of the current instance of the custom
type then the return value should be 0. This will evaluate to True for the ==, <=, and >= symbols.

	 •	Less Than – If the value of the right parameter is less than the value of the current instance of the custom
type then the return value should be any number less than 0. This will evaluate to True for the <, <=, and !=
symbols.

7 1 6

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 8 – C u s t o m t y p e s

	 •	Greater Than – If the value of the right parameter is greater than the value of the current instance of the
custom type then the return value should be any number greater than 0. This will evaluate to True for the >,
>=, and != symbols.

If a comparison cannot be made then Null should be returned instead. Lasso will attempt to perform a cast in
order to compare the two values instead. If no [Null->onCompare] callback tag is defined then Lasso will attempt
to perform a cast in order to compare the two values as well.

The value of the left parameter determines the type of comparison which is used. If a custom type is used as
the right parameter in a comparison expression and a built-in data type is used as the left parameter then the
custom type is cast to the appropriate built-in data type and the values are compared.

Note: The [Array->Find] and [Array->Sort] member tags use comparisons to determine the found set or order
of elements in the array . A custom data type will be searched or sorted according to the results of the
[Null->onCompare] callback tag .

To define a [Null->onCompare] callback tag:

The [Ex_Dollar->onCompare] callback tag will simply cast any value that is assigned to it to the decimal data type
then compare that value to the value stored in the Amount instance variable.

<?LassoScript
 Define_Tag: 'onCompare';
 Local: 'Temp' = (Decimal: (Params)->(Get: 1));
 If: (Local: 'Temp') == (Self->'Amount');
 Return: 0;
 Else: (Local: 'Temp') < (Self->'Amount');
 Return -1;
 Else: (Local: 'Temp') > (Self->'Amount');
 Return 1;
 /If;
 Return Null;
 /Define_Tag;
?>

In the following code a variable Price is set to a value of type Ex_Dollar. Then that variable is compared to
different data types.

[Variable: 'Price' = (Ex_Dollar: 19.95)]

[(Variable: 'Price') == (String: '19.95')]

[(Variable: 'Price') == (Integer: 20)]

[(Variable: 'Price') == (Decimal: 19.95)]

➜	
True

False

True

Contains Callback
The [Null->>>] callback tag is called when an instance of a custom type is used as the left parameter of a >>
comparison symbol. The callback tag is called with the value of the right parameter of the symbol. The result
of the tag should be one of the following.

	 •	True – If the value of the right parameter is contained within the current instance.

	 •	False – If the value of the right parameter is not contained within the current instance.

If the contains operation cannot be performed then Null should be returned instead. Lasso will attempt to
perform a cast in order to perform the contains operation. If no [Null->>>] callback tag is defined then Lasso
will attempt to perform a cast in order to perform the contains operation as well.

If a custom type is used as the right parameter in a contains expression and a built-in data type is used as the
left parameter then the custom type is cast to the appropriate built-in data type and the values are compared.

7 1 7

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 8 – C u s t o m t y p e s

To define a [Null->>>] callback tag:

The [Ex_Dollar->>>] callback tag will cast any value that is assigned to it to the string data type. If the output
from [Ex_Dollar->Get] run on the [Self] tag contains the parameter then True is returned.

<?LassoScript
 Define_Tag: '>>';
 Local: 'Temp' = (String: (Params)->(Get: 1));
 Return: (Self->Get) >> #Temp;
 /Define_Tag;
?>

In the following code a variable Price is set to a value of type Ex_Dollar. Then that variable is checked to see if it
contains $ which it does.

[Variable: 'Price' = (Ex_Dollar: 19.95)]

[(Variable: 'Price') >> '$']

➜	
True

Table 7: Symbol Callback Tags

Tag Description

[Null->+] Called when an instance is used as the left parameter of an addition symbol.
Accepts a single parameter which is the right parameter of the symbol. If no
parameter is specified then the unary symbol is being used.

[Null->-] Called when an instance is used as the left parameter of a subtraction symbol.
Accepts a single parameter which is the right parameter of the symbol. If no
parameter is specified then the unary symbol is being used.

[Null->*] Called when an instance is used as the left parameter of a multiplication symbol.
Accepts a single parameter which is the right parameter of the symbol.

[Null->/] Called when an instance is used as the left parameter of a division symbol.
Accepts a single parameter which is the right parameter of the symbol.

[Null->%] Called when an instance is used as the left parameter of a modulus symbol.
Accepts a single parameter which is the right parameter of the symbol.

[Null->++] Called when an instance is used as the left or right parameter of a unary
increment symbol.

[Null->--] Called when an instance is used as the left or right parameter of a unary
decrement symbol.

Note: These callback tags are not included in the Lasso tag list . They are intended to be called by Lasso
automatically rather than being called like other member tags .

Symbol Callback Tags
The symbol callback tags are called whenever the custom data type is used as the left parameter to one of the
built-in symbols +, -, *, /, or % or when the custom data type is used as the lone parameter to the + , ++, - or
-- unary symbols. These tags usually return a value of the custom data type, but can return a value of any data
type.

For the binary operators, the right parameter to the symbol is provided as the parameter of the callback
function and could be of any data type. For the unary operators, no parameter is specified.

If no callback tag is defined for a given symbol then Lasso will attempt to cast values to string and will use
the built-in string symbols.

To define a [Null->-] callback tag:

The [Ex_Dollar->-] callback tag will create a new [Ex_Dollar] data type. The value of the new type will be found by
either subtracting a value from the Amount instance variable if a parameter is specified or by changing the sign
of the Amount instance variable if no parameter is specified.

7 1 8

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 8 – C u s t o m t y p e s

<?LassoScript
 Define_Tag: '-';
 If: (Params->Size > 0);
 Return: (Ex_Dollar: (Self->'Amount') - (Decimal: Params->(Get: 1)));
 Else;
 Return: (Ex_Dollar: (Self->'Amount') * (-1));
 /If;
 /Define_Tag;
?>

In the following code a variable Price is initialized with a value of 19.95. Then, 5.95 is subtracted from variable
and the result is output. Notice that even though the amount subtracted is a decimal, the result is of type
Ex_Dollar and outputs with proper formatting.

[Variable: 'Price' = (Ex_Dollar: 19.95)]

[(Variable: 'Price') - 5.95]

➜	
$14.00

Table 8: Assignment Callback Tags

Tag Description

[Null->onAssign] Called when an assignment is made to the current instance from any other data
type using the = symbol. This tag should return True if the assignment was
successful.

[Null->+=] Called when an instance is used as the left parameter of an addition assignment
symbol. Accepts a single parameter which is the right parameter of the symbol.
This tag should return true if the assignment was successful.

[Null->-=] Called when an instance is used as the left parameter of a subtraction
assignment symbol. Accepts a single parameter which is the right parameter of
the symbol. This tag should return true if the assignment was successful.

[Null->*=] Called when an instance is used as the left parameter of a multiplication
assignment symbol. Accepts a single parameter which is the right parameter of
the symbol. This tag should return true if the assignment was successful.

[Null->/=] Called when an instance is used as the left parameter of a division assignment
symbol. Accepts a single parameter which is the right parameter of the symbol.
This tag should return true if the assignment was successful.

[Null->%=] Called when an instance is used as the left parameter of a modulus assignment
symbol. Accepts a single parameter which is the right parameter of the symbol.
This tag should return true if the assignment was successful.

Note: These callback tags are not included in the Lasso tag list . They are intended to be called by Lasso
automatically rather than being called like other member tags .

onAssign Callback
The [Null->onAssign] callback tag is called when an instance of a custom type is used as the left parameter of
the assignment symbol =. The callback tag is called with the value of the right parameter of the symbol. The
tag should attempt to store the value of the right parameter as the new value of the current instance of the
custom type. It should return one of the following values.

	 •	True – The callback tag should return True if the assignment was successful. This is the sign to Lasso that no
further work needs to be done.

	 •	False – If for any reason the assignment cannot be performed then the callback tag should return False.
Lasso will instead attempt to cast the value of the right parameter to the data type of the left parameter and
try the assignment again.

7 1 9

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 8 – C u s t o m t y p e s

If no [Null->onAssign] callback tag is defined then Lasso will attempt to cast values to the current data type by
calling the [Null->onConvert] tag of the right parameter of the assignment operator. For maximum compatibility,
each data type should support at least all built-in data types for assignment and conversion.

To define a [Null->onAssign] callback tag:

The [Ex_Dollar->onAssign] callback tag will simply cast any value that is assigned to it to the decimal data type
then store that value in the Amount instance variable. This mimics the behavior of the [Ex_Dollar->Set] member
tag which was defined previously.

<?LassoScript
 Define_Tag: 'onAssign';
 (Self->'Amount') = (Decimal: (Params)->(Get: 1));
 /Define_Tag;
?>

In the following code a variable Price is initialized with a value of type Ex_Dollar. The variable is then assigned
a string value 19.95 which is cast to a decimal value by the [Ex_Dollar->onAssign] tag called implicitly by Lasso to
perform the assignment operator.

[Variable: 'Price' = (Ex_Dollar)]
[(Variable: 'Price') = '19.95']

[(Variable: 'Price')->Get]

➜	
$19.95

Assignment Symbols Callbacks
The [Null->+=], [Null->-=], [Null->*=], [Null->/=], and [Null->%] callback tags are called when an instance of a custom
type is used as the left parameter of the corresponding assignment symbol +=, -=, *=, /=, or %=. The callback tag
is called with the value of the right parameter of the symbol. The tag should attempt to perform the desired
operation and store the value of the right parameter as the new value of the current instance of the custom
type. It should return one of the following values.

	 •	True – The callback tag should return True if the assignment was successful. This is the sign to Lasso that no
further work needs to be done.

	 •	False – If for any reason the assignment cannot be performed then the callback tag should return False.
Lasso will instead attempt to cast the value of the right parameter to the data type of the left parameter and
try the assignment again.

If no callback tag for a given assignment symbol is defined then Lasso will attempt to cast values to the
current data type by calling the [Null->onConvert] tag of the right parameter of the assignment operator.

To define a [Null->+=] callback tag:

The [Ex_Dollar->=+] callback tag will simply cast any value that is assigned to it to the decimal data type and
add that value to the Amount instance variable.

<?LassoScript
 Define_Tag: '+=';
 (Self->'Amount') += (Decimal: (Params)->(Get: 1));
 /Define_Tag;
?>

In the following code a variable Price is initialized with a value of type Ex_Dollar and a value of 19.95. Finally,
the += symbol is used to add an additional 5.95 to the variable.

[Variable: 'Price' = (Ex_Dollar: '19.95')]
[(Variable: 'Price') += '5.95']

[(Variable: 'Price')->Get]

➜	
$19.95

7 2 0

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 8 – C u s t o m t y p e s

Inheritance
Custom types can be created which inherit properties from other custom types. Each type which the custom
type should inherit from is specified after the name of the custom type in the opening [Define_Type] tag. These
are called parent types and the current type being defined is called a child type.

[Define_Type: 'myType', 'ParentType'] … [/Define_Type

If a custom type inherits from multiple types then it must list each type explicitly. For example, if a custom
type ParentType itself inherits from the built-in Array type then both ParentType and Array must be listed
explicitly in the custom type definition.

[Define_Type: 'myType', 'ParentType', 'Array'] … [/Define_Type

All instance variables and member tags of the parent types are inherited by the child type. If the child type
defines an instance variable or member tag with the same name as one of the parent types then the child’s
definition overrides the parent’s definition.

Custom types can inherit properties from built-in data types. A custom type will inherit any member tags
which the built-in type defines, but will not inherit any of the features that require callback functions. It will
be necessary to create custom casting and assignment callbacks and to implement any symbols which are
desired.

All custom data types inherit from the null data type. The tags of the null data type such as [Null->Type] can be
used by any data type within Lasso. These tags can be overridden, but doing so can cause unexpected results.

The member tags and instance variables of the parent tag can be accessed using the [Parent] tag. This tag works
like the [Self] tag, but returns the value of the current data type instance as it would be if it were of the parent
type.

The creator tag [Null->onCreate] and destructor tag [Null->onDestroy] for each parent data type is called
automatically when a new instance of the child data type is created.

To define a custom type that inherits from another custom type:

The Ex_Dollar type which is defined in this chapter only works with U.S. currency and outputs values using
the dollar sign $. It is possible to create a sub-type that works with a different type of currency. For example, a
new type Ex_UKPounds could be created which inherited from Ex_Dollar, but output values with a British pound
symbol £. by overriding the [Ex_Dollar->Get] tag with a new [Ex_UKPounds->Get] tag.

The type is defined as inheriting from Ex_Dollar by specifying Ex_Dollar after the name of the new type in the
opening [Define_Type] tag. All the member tags of Ex_Dollar are automatically defined as is the instance variable
Amount.

The [Ex_UKPounds->Get] member tag is defined and overrides the equivalent [Ex_Dollar->Get] member tag. The
[Self->Parent] tag is used to reference the Amount instance variable from the parent type.

<?LassoScript
 Define_Type: 'UKPounds', 'Ex_Dollar', -Namespace='Ex_';

 Define_Tag: 'Get';
 Return: '£' + (Self->Parent->'Amount');
 /Define_Tag;

 /Define_Type;
?>

The following example sets two variables, one to a value of Ex_Dollar type and the other to a value of
Ex_UKPounds type, then outputs both values. The types are converted to strings when they are output and the
appropriate [Ex_Dollar->Get] or [Ex_UKPounds->Get] tag is called to format the output.

[Variable: 'American'= (Ex_Dollar: 100)]

[Variable: 'American']
[Variable: 'British'= (Ex_UKPounds: 100)]

[Variable: 'British']

7 2 1

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 8 – C u s t o m t y p e s

�	
$100.00

£100.00

Libraries
Libraries can be used to package custom tags and custom types into a format which is easy for any Lasso
developer to incorporate into a Lasso-powered Web site.

The following types of libraries can be created:

 •	On-Demand Tag Library – A set of custom tag and custom type declarations can be stored in a Lasso page
or LassoApp and placed in the LassoLibraries folder in the Lasso Professional 8 application folder. The Lasso
page or LassoApp should have the same name (before the .Lasso or .LassoApp file suffix) as the namespace
of the tags defined within. Sub-folders can be used to define nested namespaces.

	 •	Library Lasso Page – A set of custom tag and custom type declarations can be stored in a Lasso page and
then included in any other Lasso page using the [Library: 'library.lasso'] tag. This is a good way to create and
use a library file whose defined tags and types will only be needed on a few pages in a site.

	 •	LassoStartup Lasso Page – A set of custom tag and custom type declarations can be stored in a Lasso
page placed within the LassoStartup folder. After Lasso Service is restarted all tags, types, and page variables
which are defined within the Lasso page will be available to all Lasso pages which are executed on the
server.

7 2 2

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 8 – C u s t o m t y p e s

59
Chapter 59

Custom Data Sources

Data sources can be implemented entirely in LassoScript using the techniques and tags documented in this
chapter.

	 •	Overview describes the basic methodology of creating a LassoScript data source and how to install a
LassoScript data source.

	 •	Data Source Tags describes the tags that are available to help make a LassoScript data source.

	 • Data Source Type describes the data type that must be implemented to create a new LassoScript data
source.

Overview
Lasso provides the ability to create a data source entirely in LassoScript code. This makes it possible to easily
implement entirely new types of data source modules without using either C/C++ or Java code.

	 •	Custom data sources can use the net type to connect to a remote data source. Incoming data can be parsed
using string or XML tags.

	 •	Custom data sources can use XML-RPC or SOAP to connect to remote procedures. Searching remote
application servers can be made as easy as searching local databases.

	 •	Custom data sources can use the file tags to provide access to files on the local machine through standard
Lasso actions. For example, the XML tags could be used to search local XML files.

	 •	Custom data sources can be used as a wrapper around other Lasso data sources providing round-robin load
balancing, intelligent fail over behavior, or caching.

A LassoScript data source is implemented as a custom type that must define certain member tags. The data
source is registered with Lasso at Lasso Startup using the [DataSource_Register] tag and then appears within
Lasso Administration along with the standard data sources, JDBC drivers, and any third-party data sources
implemented in LCAPI or LJAPI.

The LassoScript data source must provide a list of databases to Lasso. When any of these database names are
used within an inline action a new instance of the LassoScript data source type is instantiated and a member
tag is called to perform the action. Once the action is performed the instance of the LassoScript data source
type is deleted.

Data Source Register
The following table shows the tag that is used to register a LassoScript data source. This tag should be called
in LassoStartup once for each LassoScript data source.

7 2 3

L a s s o 8 . 5 L a n g u a g e g u i d e

Table 1: Data Source Register

Tag Description

[Datasource_Register] Registers a data type as a new data source. The tag requires one parameter
which is the name of the data source that implements the data source. The
specified data source must implement the tags described in the following section.

To register a LassoScript data source:

Use the [Datasource_Register] tag with the name of the custom data source that implements the LassoScript data
source. This tag should be called once by a file in the LassoStartup folder. In the following example a custom
data source Ex_DataSource is registered.

<?LassoScript
 Define_Type: 'DataSource', -Namespace='Ex_';
 … Data Source Definition …
 /Define_Type;
 Datasource_Register: 'Ex_DataSource';
?>

Data Source Type
Each custom type that implements a LassoScript data source must define the following member tags. Lasso
calls these tags in order to retrieve the list of databases, tables, schemas, or fields from the data source host
and to perform database actions when an [Inline] is called with one of the data source’s databases. Each of
these member tags is described in more detail below.

Note: It is recommended that each data source implement each of these member tags even if they contain no
statements .

Table 2: Data Source Member Tags

Tag Description

Initialize Called once immediately after the data source is registered. This allows the data
source to perform an initialization routine if required.

Terminate Called once immediately before Lasso Service is quit. This tag allows the data
source to perform a global cleanup routine if required.

onCreate Called when a new instance of the data source is created. The tag is passed an
array of information about the host for the data source.

DatabaseNames Called when Lasso needs a list of the databases that the data source provides.
The return value must be an array of strings.

DatabaseExists Pased a single parameter which is the name of a database. The return value
should be True or False depending on whether this data source can handle the
database.

SchemaNames Passed a single parameter which is the name of a database. The return value
should be an array of strings representing the schemas (if any) this data source
supports.

TableNames Passed a single parameter which is the name of a database. The return value
should be an array of strings representing the table names (if any) this data
source supports.

Info Passed two parameters: the name of the database and name of the table. The
return value should be an array of arrays for each field in the specified table.
Each field array should contain four elements (field name, required true/false,
type, protected true/false).

Action Passed a single parameter which is an array of action parameters. The data
source must interpret the action and provide an appropriate response.

7 2 4

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 9 – C u s t o m d a t a s o u r C e s

Tickle This tag is called by Lasso periodically to keep a connection alive to a remote
data source.

Initialize and Terminate
The Initialize and Terminate tags are provided so that a data source can perform global initialization and cleanup
routines if requires. Most data sources will probably not need to implement these.

For example, a data source that stores values in a global variable could set up the variable in the Initialize
member tag.

<?LassoScript
 Define_Type: 'DataSource', -Namespace='Ex_';

 Define_Tag: 'Initialize;
 Global: 'Ex_DataSource_Storage' = (Map);
 /Define_Tag;

 … Additional Member Tags …
 /Define_Type;
?>

Note: If Lasso Service crashes the Terminate tag will never be called . A data source which relies on this tag being
called could suffer from data loss if Lasso Service crashes .

onCreate and onDestroy
The onCreate tag is called when Lasso creates a new instance of a data source. This happens when an opening
[Inline] tag references a database provided by the data source or when the data source is refreshed in Lasso
Administration. The onDestroy tag is called when the data source instance is destroyed.

Lasso does not create new data source instances for nested inlines that reference the same data source host. A
single data source instance may be asked to perform actions for a series of different databases and tables on
the same host.

The onCreate tag is passed an array of information about the host defined in Lasso Administration for the
referenced database. The elements of the array are defined in the following table.

Table 3: Host Information

Tag Description

Host Usually the URL of the desired data source host.

Port The port number for the host.

Schema The default schema for the host.

Username The username for the host.

Password The password for the host.

The information provided to onCreate is set in Lasso Administration. The fields do not have to be used for
the purpose their label suggests. If a LassoScript data source does not require host or port information the
documentation for the data source can instruct the end-user to enter whatever information is desired in Lasso
Administration.

<?LassoScript
 Define_Type: 'DataSource', -Namespace='Ex_';

 Define_Tag: 'onCreate', -Required='HostInfo';

 /Define_Tag;

7 2 5

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 9 – C u s t o m d a t a s o u r C e s

 … Additional Member Tags …
 /Define_Type;
?>

Usually, the data source type will need to store some of the information passed to the onCreate tag in order
to remember what host the data source is connected to when an action occurs. For data sources that establish
connections with remote hosts or open files the reference to the remote host or local files can sometimes
serve as the state for subsequent database actions.

Database, Schema, and Table Names
The DatabaseNames, SchemaNames, and TableNames tags are all used by Lasso Administration to create the
entries in Lasso Security for the data source. The database entries in particular are used to route [Inline]
database actions to the LassoScript data source so must be accurate.

This tag will always be called after an onCreate tag which contains the host information for the current data
source connection. The onCreate tag needs to store enough state so a subsequent call to DatabaseNames can
list the databases for the desired host. Both the SchemaNames and TableNames tags must operate similarly in
addition to being passed a specific database name as a parameter.

In the following example the DatabaseNames tag is hard coded to return two databases Database_One
and Database_Two. The TableNames tags returns Table_One and Table_Two for Database_One or Table_Two and
Table_Three for Database_Two. In an actual LassoScript data source the database and table names would usually
be generated based on what data was actually available on the remote data source.

<?LassoScript
 Define_Type: 'DataSource', -Namespace='Ex_';

 Define_Tag: 'DatabaseNames';
 Return: (Array: 'Database_One', 'Database_Two');
 /Define_Tag;

 Define_Tag: 'TableNames', -Required='Database';
 Select: #Database;
 Case: 'Database_One';
 Return: (Array: 'Table_One', 'Table_Two');
 Case: 'Database_Two';
 Return: (Array: 'Table_Three', 'Table_Four');
 /Select;
 /Define_Tag;

 … Additional Member Tags …
 /Define_Type;
?>

SchemaNames is not shown in the example above, but can be coded in exactly the same fashion as TableNames.

Field Info
The Info tag is used by Lasso Administration to create the entries in Lasso Security for the data source. It is
also used after a database action to establish a correspondence between field names and the positions in the
results array.

The Info tag is passed the name of the database and the name of the table. The return value from the Info tag is
an array of arrays. Each element of the returned array represents one field with a four element array. All four
elements are required including:

	 •	Field Name – A string representing the name of the field.

	 •	Required – A boolean value indicating if the field is required or not. Should be set to False by default.

	 •	Field Type – A string representing the type of the field. The types can be data source specific. They are
displayed in the database browser and may be used by some solutions.

	 •	Protected – A boolean value indicating if the field is read-only or not. Should be set to False by default.

7 2 6

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 9 – C u s t o m d a t a s o u r C e s

A generic array for a field is shown below. A data source should use this at a minimum to ensure Lasso has all
the information it needs about each field.

[Array: 'Field Name', False, 'Text', False]

In the following example the Info tag returns an array of fields Field_One, Field_Two, Field_Three, and Field_Four
for Database_One and Table_One. The tag could be extended to return field info for the other databases and
tables as well. In an actual LassoScript data source the field info would usually be generated based on what
data was actually available on the remote data source.

<?LassoScript
 Define_Type: 'DataSource', -Namespace='Ex_';

 Define_Tag: 'Info', -Required='Database', -Required='Table';
 Select: #Database + '.' + #Table;
 Case: 'Database_One.Table_One';
 Return: (Array:
 (Array: 'Field_One', False, 'Text', False);
 (Array: 'Field_Two', False, 'Number', False);
 (Array: 'Field_Three', False, 'Date', False);
 (Array: 'Field_Four', False, 'Binary', False);
);
 … Cases For Other Databases and Tables
 /Select;
 /Define_Tag;

 … Additional Member Tags …
 /Define_Type;
?>

Database Actions
The Action tag is called whenever a LassoScript data source is used in an inline tag by the end-user. The tag is
passed an array of parameters which has the same content as [Action_Params] called inside of an [Inline] … [/Inline]
container tag.

The array of parameters will contain one action (listed below), one each of -Database, -Table, -KeyField,
-MaxRecords, -SkipRecords, and -OperatorLogical tags, and additional parameters as specified by the user. It is the
LassoScript data source’s responsibility to interpret these parameters, decide what action to perform, and
return appropriate results.

The list below explains how Lasso interprets each of the built-in database actions. For best results custom data
sources should try to match these meanings as close as possible. Custom data sources should also respect the
-MaxRecords and -SkipRecords values if possible. However, it is not necessary for a LassoScript data source to
implement every action or to provide exactly the same behavior as built-in data sources.

	 •	-Search – The parameters specified with the action should be interpreted as search terms. -MaxRecords
specifies the maximum number of records that should be returned and -SkipRecords specifies an offset into
the found set at which to start returning records. See the section on Result Sets below for details about
how to return records and set the [Found_Count] and [Total_Count].

Lasso supports a number of optional parameters that a LassoScript data source should process if possible.
These include -Op parameters that immediately precede name/value parameters and specify what search
operator to use, -OpBegin and -OpEnd parameters that allow sophisticated And/Or groupings, -SortField and
-SortOrder parameters, as well as -GroupBy, -Distinct, and -SortRandom parameters. The experience of the end-
user will be richer if more of these parameters are provided by a LassoScript data source.

	 •	-FindAll – The same as a -Search action, but none of the search parameters should be regarded. Other
parameter like -MaxRecords, -SkipRecords, -SortField, etc. should still be processed.

	 •	-Random – The same as a -Search action, but a random selection of records is returned. The behavior of
-Random differs from data source to data source. It can either be based on -FindAll or -Search. Not all data
sources support the -Random action.

7 2 7

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 9 – C u s t o m d a t a s o u r C e s

	 •	-Add – Add a record to the database. The parameters specify the record that is to be added. The result of an
-Add action will often contain the single record that was just added to the database. Some data sources use
-MaxRecords=0 to suppress returning this record.

	 •	-Update – Update a single record within a database. A -KeyField and -KeyValue must in general be specified
in order to determine what record to update. The parameters specify the new values for the updated
record. The result of an -Update action will often contain the single record that was just updated within the
database. Some data sources use -MaxRecords=0 to suppress returning this record.

	 •	-Delete – Delete a single record from the database. A -KeyField and -KeyValue must in general be specified in
order to determine what record to delete. The parameters are generally disregarded. The result of a -Delete
action will usually be an empty set.

	 •	-Duplicate – Duplicate a record within the database. A -KeyField and -KeyValue must in general be specified
in order to determine what record to duplicate. The parameter may be disregarded or may be used to
update the duplicated record. The result of a -Duplicate action will often contain the single record that was
just added to the database. Some data sources use -MaxRecords=0 to suppress returning this record. Not all
data sources support the -Duplicate action.

	 •	-SQL – Execute a raw SQL statement on the data source. This action is used for data sources that support
SQL, but may reasonably be used for raw database commands for any data source (e.g. XPath statements or
data source specific low-level commands). Most of the parameters of the action are generally disregarded
except for -MaxRecords and -SkipRecords.

	 •	-Nothing – This is the default action if no other valid action is defined. A LassoScript data source should
in general not perform any action when a -Nothing action is specified. However, some data sources will use a
-Nothing action to send a keep-alive ping to a data source.

Some data sources may define additional actions beyond those listed here. Those actions will be reported
as a -Nothing action with the actual action specified within the parameters passed to the Action tag.

The actual implementation of each of the actions is up to the LassoScript data source developer. Custom data
sources can run from simple implementations that support only a couple actions to full-fledged modules that
support all of the rich set of actions and additional parameters that Lasso provides.

The example below uses a [Select] … [Case] … [/Select] tag to choose which action to perform based on the
contents of the #Action_Params array. Any actions that are not supported by the data source are caught by the
default -Nothing action option at the end. See the Result Sets section below for an example of how a -Search
action can return results.

<?LassoScript
 Define_Type: 'DataSource', -Namespace='Ex_';

 Define_Tag: 'Action', -Required='Action_Params';
 Select: True;
 Case: (#Action_Params >> -Search);
 … Search Action (See Result Sets below for an example) …
 Case: (#Action_Params >> -FindAll);
 … FindAll Action …
 Case: (#Action_Params >> -Add);
 … Add Action …
 Case: (#Action_Params >> -Update);
 … Update Action …
 Case: (#Action_Params >> -Delete);
 … Delete Action …
 Case;
 … Nothing Action …
 /Select;
 /Define_Tag;

 … Additional Member Tags …
 /Define_Type;
?>

7 2 8

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 9 – C u s t o m d a t a s o u r C e s

Result Sets
Most database actions return results to the end-user. These results are returned in the same way no matter if
the action is a -Search or -Add.

The current result set is set using the [Action_AddRecord] tag once for each record in the result set. Usually,
the entire result set is not returned, but only up to a maximum of -MaxRecords records starting at the offset
defined by -SkipRecords. The [Action_AddRecord] tag requires one parameter which is an array of values for
each field in a single returned record.

The field names returned by the Info tag should correspond to the same order as the results passed to the
[Action_AddRecord] tag. This allows Lasso to return the proper field value for each [Field] tag.

Lasso will automatically calculate [Shown_Count], [Shown_First], and [Shown_Last] based on the number of
times [Action_AddRecord] is called and the value for -SkipRecords. The value for [Found_Count] can be set by
calling [Action_SetFoundCount]. In addition, some databases can set [Total_Count] to the total number of records
in the database using [Action_SetTotalCount].

Finally, when processing an -Add or -Update action the current [RecordID_Value] can be set using
[Action_SetRecordID]. This is separate from the key field value which is set automatically based on the value for
-KeyField and the mapping from field names to field values. Some Custom data sources may want to set this
value in order to return an internally generated ID that may be different from the key field value.

The following table shows the tags that are available for returning database action results.

Table 4: Result Set Tags

Tag Description

[Action_AddRecord] Adds a record to the found set after a database action. Requires one parameter
which is an array of strings representing the results for one record of the found
set.

[Action_AddInfo] Reports the names of fields in the result set. Requires one parameter which is an
array of arrays. Each field array needs name, required, type, and protection. The
output of the ->Info member tag matches the required parameter of this tag.

[Action_SetFoundCount] Sets the number of records found in a database during a search action. Requires
one integer parameter.

[Action_SetTotalCount] Sets the total number of records that are in a database during a search action.
Requires one integer parameter.

[Action_SetRecordID] Sets the record ID value. This is the value returned by [RecordID_Value].
Requires one integer parameter.

The example below returns a set of eight records from a -Search action. It is hard-coded to return eight records
and set the found count to 32 records and the total count to 256 records. In an actual LassoScript data source
the field values would usually be generated based on what data was actually available on the remote data
source.

<?LassoScript
 Define_Type: 'DataSource', -Namespace='Ex_';

7 2 9

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 9 – C u s t o m d a t a s o u r C e s

 Define_Tag: 'Action', -Required='Action_Params';
 Select: True;
 Case: (#Action_Params >> -Search);
 [Action_SetFoundCount: 32]
 [Action_SetTotalCount: 256]
 [Action_AddInfo: Self->(Info:
 #Action_Params->(Find: -Database)->First->Second,
 #Action_Params->(Find: -Table)->First->Second)]
 [Action_AddRecord: (Array: 'One', 'Two', 'Three', 'Four')]
 [Action_AddRecord: (Array: 'Five', 'Six', 'Seven', 'Eight')]
 [Action_AddRecord: (Array: 'Nine', 'Ten', 'Eleven', 'Twelve')]
 [Action_AddRecord: (Array: 'Thirteen', 'Fourteen', 'Fifteen', 'Sixteen')]
 [Action_AddRecord: (Array: 'One', 'Two', 'Three', 'Four')]
 [Action_AddRecord: (Array: 'Nine', 'Ten', 'Eleven', 'Twelve')]
 [Action_AddRecord: (Array: 'Five', 'Six', 'Seven', 'Eight')]
 [Action_AddRecord: (Array: 'Thirteen', 'Fourteen', 'Fifteen', 'Sixteen')]
 … Cases For Other Actions …
 /Select;
 /Define_Tag;

 … Additional Member Tags …
 /Define_Type;
?>

7 3 0

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 5 9 – C u s t o m d a t a s o u r C e s

IX
Section IX

Lasso C/C++ API

This section includes instructions for extending the functionality of Lasso by creating new tags, data types,
and Web server connectors written in C/C++.

	 •	Chapter 60: LCAPI Introduction includes general information about extending Lasso’s functionality.

	 •	Chapter 61: LCAPI Tags discusses how to create new tags in LCAPI including substitution tags, asynchro-
nous tags, and remote procedures.

	 •	Chapter 62: LCAPI Data Types discusses how to create new data types in LCAPI including sub-classing
and symbol overloading.

	 •	Chapter 63: LCAPI Data Sources discusses how to create new data sources in LCAPI.

	 •	Chapter 64: LCAPI References includes information about each of the function calls available in LCAPI.

Lasso can also be extended using LassoScript or Java. See the preceding section on the LassoScript API or the
following section on the Lasso Java API (LJAPI) for more information..

7 3 1

L a s s o 8 . 5 L a n g u a g e g u i d e

60
Chapter 60

LCAPI Introduction

This chapter provides an introduction to the Lasso C/C++ API (LCAPI) which allows new tags, data types, and
data source connectors to be written in C/C++.

	 •	Overview includes a description of what types of modules can be built with LCAPI.

	 •	Requirements describes the basic system requirements for building LCAPI modules

	 •	Getting Started includes a walktrhough of building a sample tag module on both Mac OS X and
Windows.

	 •	Debugging describes how the debugging tools can be used on an LCAPI module in either Mac OS X or
Windows.

	 •	Frequently Asked Questions includes a series of common questions that new users of LCAPI have and
answers.

Overview
The Lasso C/C++ Application Programming Interface (LCAPI) lets you write C or C++ code to add new Lasso
substitution tags, data types, and data source connectors to Lasso Professional 8.

Writing tags in LCAPI offers advantages over LJAPI and custom Lasso tags in speed and system performance.
However, tags must be compiled separately for Windows 2000/XP and Mac OS X in order to support each
platform. See the Custom Tags and Custom Types chapters for more information on writing custom tags
in Lasso. LCAPI is functionally similar to LJAPI. See the Lasso Java API chapter for more information about
writing tags, data types, and data source connectors in Java using LJAPI.

This chapter provides a walk-through for building an example substitution tag, data source
connector, and data type in LCAPI. Source code for the Lasso MySQL module as well as the
code for the substitution tag, data type, and data source connector examples are included in the
Lasso Professional 8/Documentation/3 - Language Guide/Examples/LCAPI folder on the hard drive.

Requirements
In order to write your own Lasso substitution tags or data source connectors in C or C++, you need the
following:

Windows

	 •	Microsoft Windows 2000 or Microsoft Windows XP Professional.

	 •	Microsoft Visual C++ .NET.

	 •	Lasso Professional 8 for Windows 2000/XP.

7 3 2

L a s s o 8 . 5 L a n g u a g e g u i d e

Mac OS X

	 •	Mac OS X 10.3 with GNU C++ compiler and linker (Dev Tools) installed.

	 •	Lasso Professional 8 for Mac OS X.

Getting Started
This section provides a walk-through for building sample LCAPI tag modules in Windows 2000/XP and Mac
OS X.

To build a sample LCAPI tag module in Windows 2000/XP:

 1 Locate the following folder in the hard drive.

C:\Program Files\OmniPilot Software\Lasso Professional 8\ Documentation\3 - Language Guide\Examples\LCAPI\Tags\
MathFuncsTags

 2 In the MathFuncsTags folder, double-click the MathFuncsCAPI.sln project file (you need Microsoft Visual C++
.NET in order to open it).

 3 Choose Build > Build Solution to compile and make the MathFuncsCAPI.DLL.

 4 After building, a Debug folder will have been created inside your MathFuncsCAPI project folder.

 5 Open the MathFuncsTags/Debug folder and drag MathFuncsCAPI.DLL into the Lasso Professional 8/LassoModules
folder on the hard drive.

 6 Stop and then restart Lasso8Service.

 7 New tags [Example_Math_Abs], [Example_Math_Sin] and [Example_Math_Sqrt] are now part of the Lasso language.

 8 Drag the sample Lasso page called MathFuncsCAPI.lasso into your Web server root.

 9 In a Web browser, view http://localhost/MathFuncsCAPI.lasso to see the new Lasso tags in action.

To build a sample LCAPI tag module in Mac OS X:

 1 Open a Terminal window.

 2 Change the current folder to the Lasso Professional 8/Documentation folder using the following command:

 cd /Library/Lasso Professional 8/Documentation/3 - Language Guide\Examples\LCAPI\Tags\MathFuncsTags

 3 Build the sample project using the provided makefile (you’ll need to know a Mac OS X administrator
password to use sudo).

sudo make

 4 After building, a Mac OS X dynamic library file named MathFuncsCAPI.dylib will be in the current folder. This
is the LCAPI module you’ll install into the LassoModules folder.

 5 Copy the newly-created module to the Lasso modules folder using the following command:

cp MathFuncsCAPI.dylib /Applications/Lasso Professional 8/LassoModules

 6 Quit Lasso Service if it’s running, so that the next time it starts up, it will load the new module you just
built (you’ll need to know a Mac OS X administrator password to use sudo).

sudo lasso8ctl stop

 7 Start Lasso Service so it will load the new module.

sudo lasso8ctl start

New tags [Example_Math_Abs], [Example_Math_Sin] and [Example_Math_Sqrt] are now part of the Lasso language.

 8 Copy the sample Lasso page called MathFuncsCAPI.lasso into your Web server document root.

 9 Use a Web browser to view http://localhost/MathFuncsCAPI.lasso to see the new Lasso tags in action.

7 3 3

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 0 – L C a p i i n t r o d u C t i o n

Debugging
You can set breakpoints in your LCAPI DLLs or DYLIBs and perform source-level debugging for your own
code. In order to set this up, add path information to your project so it knows where to load executables
from. For this section, we will use the provided substitution tag project as the example.

To debug in Windows 2000/XP:

 1 Select Processes… from the Debug main menu.

 2 In the Processes window, select each instance of Lasso8Service.exe and choose to Attach.

 3 Close the Processes window and set a breakpoint in the tagMathAbsFunc function.

 4 Use a Web browser to access the sample http://localhost/MathFuncsCAPI.lasso. Visual Studio will stop at the
location that the breakpoint was placed.

To debug in Mac OS X:

 1 From a Terminal window, change folder into the example LCAPI source code folder by entering the
following:

cd /Applications/Lasso\ Professional\ 8/Documentation/3 - Language Guide\Examples\LCAPI\Tags\MathFuncsTags

 2 Build with debug options turned on by entering the following:

sudo make "DEBUG += -g3 -O0"

Note: The last two characters of the command are a letter O followed by a zero .

 3 Copy the built DYLIB into the LassoModules folder by entering the following:

cp MathFuncsCAPI.dylib /Applications/Lasso\ Professional\ 8/LassoModules/

 4 Change folder into the Lasso Professional 8/Tools folder:

cd /Applications/Lasso\ Professional\ 8/Tools/

 5 Restart Lasso Service. When it starts up, it will load the new module you just built (you’ll need to know a
root password to use sudo).

sudo lasso8ctl stop

 6 Start the Lasso Service back up, so it will load the new module.

sudo lasso8ctl start

 7 Find out the process ID number of Lasso Service so you can attach to it later with GNU Debugger. Make a
note of the process id for Lasso8Service.

ps aux | grep Lasso8Service

 8 Start the GNU Debugger as a root user. You must be root in order to attach to the running Lasso Service
process.

sudo gdb

 9 From within GNU Debugger’s command line, attach to the Lasso Service process ID by entering the
following:

attach <type the process id from step 7 here>

 10 Instruct GNU Debugger to break whenever the function tagMathAbsFunc is called by entering the following:

break tagMathAbsFunc

 11 Use a Web browser to access the sample http://localhost/MathFuncsCAPI.lasso. An example Lasso page is
provided in the LCAPI folder; you must first copy it into your Web server’s Documents folder, which is
typically /Library/WebServer/Documents.

7 3 4

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 0 – L C a p i i n t r o d u C t i o n

 12 GNU Debugger breaks at the first line in tagMathAbsFunc() as soon as Lasso Service executes that tag in the
Lasso page

 13 Type help in GNU Debugger for more information about using the GNU Debugger, or search for gdb
tutorial on the Web for more in-depth tutorials.

Frequently Asked Questions

How do I install my custom tag?

Once you’ve compiled your tag module, you’ll need to move the module to your installed Lasso Professional
LassoModules folder, and then restart Lasso Service. Step-by-step instructions are available in the Getting
Started section.

How do I return text from my custom tag?

Use either lasso_returnTagValueString to return UTF-8 data, or lasso_returnTagValueStringW to return UTF-16
data. Character data in other encoding methods can be returned by first allocating a string type using
lasso_typeAllocStringConv and then returning it using lasso_returnTagValue.

How do I return binary data from my custom tag?

Use lasso_returnTagValueBytes to return binary data.

How do I prevent Lasso from automatically encoding text returned from my custom tag?

Make sure that your tag is registered with the flag_noDefaultEncoding flag. This flag is specified when you call
lasso_registerTagModule at startup.

How do I debug my custom tag?

You can set breakpoints in your code and attach your module DLL to Lasso Service. Read the section on
Debugging LCAPI modules.

How do I get parameters that were passed into my tag?

Most of the parameters passed into your custom tag can be retrieved using the lasso_getTagParam()
and lasso_findTagParam() parameter info APIs. lasso_getTagParam() retrieves parameters by index and
lasso_findTagParam() retrieves them by name. All parameters retrieved using those functions will be returned as
strings. The access the parameters as Lasso type instances, use lasso_getTagParam2 and lasso_findTagParam2.

How do I get the value of unnamed parameters passed into my tag?

While there is no direct way to get unnamed parameters (how do you know what name to ask for?), you
can enumerate through all the parameters by index, and then pick out the ones which do not have names.
If, after retrieving a parameter, you discover that its data member is an empty string, then that means it
is an unnamed parameter, and you can get its value from the name member. An example of this is in the
substitution tag tutorial.

What’s an auto_lasso_value_t and how do I use it?

It’s a data structure which contains both a name and a value (a name/value pair). Many LCAPI APIs fill in
this structure for you, and you can access the name and data members directly as null-terminated C-strings.

What is a lasso_type_t and how do I use it?

A lasso_type_t represents an instance of a Lasso type. Any Lasso type can be represented by a
lasso_type_t, including strings, integers, or custom types. LassoCAPI provides many functions for allocating
or manipulating lasso_type_t instances. All lasso_type_t instances encountered inside a LassoCAPI tag will be
automatically garbage collected after the function returns. Therefore, a lasso_type_t instance should not be
saved unless it if freed from the garbage collector using lasso_typeDetach.

7 3 5

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 0 – L C a p i i n t r o d u C t i o n

How do I access variables from the Lasso page I’m in?

You may need to get or even create Lasso variables (the same variables that a Lasso programmer makes when
using the [var: 'fred'=12] variable syntax in a Lasso page) from within your LCAPI module. You can retrieve a
global variable, as long as it has already been assigned before your custom substitution tag is executed, by
calling lasso_getVariable() with the variable’s name. Using this method, one could directly set the __htmll_reply__
variable.

How do I return fatal and non-fatal error codes?

It is very important that your substitution tag return an error code of osErrNoErr (0) if nothing fatal happened.
An example of a fatal error would be a missing required parameter, for instance. If you encounter a fatal error,
then return a non-zero result code from your tag function, and the Lasso will stop processing the page at that
point, and display an error page.

How do I write code that will compile easily across multiple operating systems?

While we cannot provide a complete cross-platform programming tutorial for you here, we can at least
provide some guidance. The simplest way to make sure things compile across platforms is to make sure you
use standard library functions (from stdio.h and stdlib.h) as much as possible: functions like strcpy(), malloc(), and
strcmp() are always available on all platforms. Also note that Unix platforms are case-sensitive, so when you
#include files, just make sure you keep the case the same as the file on disk. Finally, stay away from platform-
specific functions, such as Windows APIs, which most often are not available on Unix platforms. Take a look
at our Unix makefiles which are provided with the sample projects: notice the same source code is used for
Windows, and all source files are saved with DOS-style cr/lf linebreaks so as not to confuse the Windows
compilers. As a last resort, you can use #ifdef to show/hide portions of source code which are platform-
specific.

7 3 6

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 0 – L C a p i i n t r o d u C t i o n

61
Chapter 61

LCAPI Tags

This chapter includes information about creating tags in C/C++ using the Lasso C/C++ API (LCAPI).

	 •	Substitution Tag Operation introduces the concepts behind substitution tags and how they are loaded and
accessed through Lasso.

	 •	Substitution Tag Tutorial documents a sample project that is shipped with Lasso including a walk-through
of the sample code.

Substitution Tag Operation
When Lasso Professional first starts up, it looks for module files (Windows DLLs or Mac OS X DYLIBS) in its
LassoModules folder. As it encounters each module, it executes that module’s registerLassoModule() function once
and only once. LCAPI developers must write code to register each of the new custom tag (or data source)
function entry points in this registerLassoModule() function. The following function is required in every LCAPI
module. It gets called once when Lasso Professional starts up.

void registerLassoModule()
{
 lasso_registerTagModule("CAPITester", "testtag", myTagFunc,
 REG_FLAGS_TAG_DEFAULT, "simple test LCAPI tag");
}

The preceding example registers a C function called myTagFunc to execute whenever the Lasso
[CAPITester_testtag] is encountered inside a LassoScript. The first parameter CAPITester is the namespace in
which testtag will be placed.

Once the tag function is registered, Lasso will call it at appropriate times while parsing and executing
LassoScripts. The custom tag functions will not be called if none of the custom tags are encountered while
executing a script. When Lasso Professional 8 encounters one of your custom tags, it will be called with two
parameters: an opaque data structure called a ”token”, and an integer ”action” (which is currently unused).
LCAPI provides many function calls which you can use to get information about the environment, variables,
parameters, etc., when provided with a token.

The passed-in token can also be used to acquire any parameters and to return a value from your custom tag
function.

To build a basic custom tag function:

Enter the following code:

osError myTagFunc(lasso_request_t token, tag_action_t action)
{
 const char * retString = "Hello, World!";
 return lasso_returnTagValueString(token, retString, strlen(retString));
}

7 3 7

L a s s o 8 . 5 L a n g u a g e g u i d e

Below is the LassoScript needed to get the custom tag to execute:

Here's the custom tag:
[CAPITester_testtag]
<!-- This should display "Hello, World" when this page executes -->

This will produce the following output:

�	 Here's the custom tag:
Hello, World

Substitution Tag Tutorial
This section provides a walk-through of building an example tag to show how LCAPI features are used.
This code will be most similar to the sample MathFuncsCAPI project, so in order to build this code, copy the
MathFuncsCAPI project folder and edit the project files inside it.

The tag will simply display its parameters, and will look like the example below when called from a
LassoScript.

Example of the sample tag’s syntax:

[sample_tag: 'some text here', -option1='named param', -option2=12.5]

Notice the tag takes one unnamed parameter, one string parameter named -option1, and a numeric parameter
named -option2. In general, Lasso does not care about the order in which you pass parameters, so plan to
make this tag as flexible as possible by not assuming anything about the order of parameters. The following
variations should work exactly the same:

Example of sample tag with different ordered parameters:

[sample_tag: -option2=12.5, 'some text here', -option1='named param']

[sample_tag: -option2=12.5, -option1='named param', 'some text here']

Substitution Tag Module Code
Shown below is the code for the substitution tag module. This code is referenced in the Substitution Tag
Module Walk Through section.

void registerLassoModule()
{
 lasso_registerTagModule("sample", "tag", myTagFunc,
 REG_FLAGS_TAG_DEFAULT, "sample test");
}

osError myTagFunc(lasso_request_t token, tag_action_t action)
{
 lasso_type_t retString = NULL, opt2 = NULL;
 lasso_typeAllocString(token, &retString, "", 0);
 auto_lasso_value_t v;
 INITVAL(&v);

 if(lasso_findTagParam(token, "-option1", &v) == osErrNoErr)
 {
 lasso_typeAppendString(token, "The value of -option1 is ", 25);
 lasso_typeAppendString(token, v.data, v.dataSize);
 }

7 3 8

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 1 – L C a p i t a g s

 if(lasso_findTagParam2(token, "-option2", &opt2) == osErrNoErr)
 {
 double tempValue;
 char tempText[128];
 lasso_typeGetDecimal(token, opt2, &tempValue);
 sprintf(tempText, "%.15lg", tempValue);
 lasso_typeAppendString(token, " The value of -option2 is ", 26);
 lasso_typeAppendString(token, tempText, strlen(tempText));
 }

 int count = 0;
 lasso_getTagParamCount(token, &count);

 for (int i = 0; i < count; ++i)
 {
 lasso_getTagParam(token, i, &v);
 if (v.dataSize == 0)
 {
 lasso_typeAppendString(token, " The value of unnamed param is ", 31);
 lasso_typeAppendString(token, v.name, v.nameSize);
 }
 }

 return lasso_returnTagValue(token, retString);
}

Substitution Tag Module Walk Through
This section provides a step-by-step walk through of the code for the substitution tag module.

To build a sample LCAPI tag module:

 1 First, register the new tag in the required registerLassoModule() export function.

void registerLassoModule()
{
 lasso_registerTagModule("sample", "tag", myTagFunc,
 REG_FLAGS_TAG_DEFAULT, "sample test");
}

 2 Implement myTagFunc, which gets called when [sample_tag] is encountered. All tag functions have this
prototype. When the tag function is called, it’s passed an opaque “token” data structure.

osError myTagFunc(lasso_request_t token, tag_action_t action)
{

The remainder of the code in the walk through includes the implementation for the myTagFunc function.

 3 Allocate a string which will be this tag’s return value.

 lasso_type_t retString = NULL, opt2 = NULL;
 lasso_typeAllocString(token, &retString, "", 0);

 4 The auto_lasso_value_t variable named v will be our temporary variable for holding parameter values. Start
off by initializing it.

 auto_lasso_value_t v;
 INITVAL(&v);

 5 Call lasso_FindTagParam() in order to get the value of the -option1 parameter. If it is found (no error while
finding the named parameter), append some information about it to our return value string.

7 3 9

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 1 – L C a p i t a g s

 if(lasso_findTagParam(token, "-option1", &v) == osErrNoErr)
 {
 lasso_typeAppendString(token, "The value of -option1 is ", 25);
 lasso_typeAppendString(token, v.data, v.dataSize);
 }

 6 Look for the other named parameter, -option2 and store its value into variable opt2. Because -option2
should be a decimal value, use lasso_findTagParam2, which will preserve the original data type of the value
as opposed to converting it into a string like lasso_findTagParam will.

 if(lasso_findTagParam2(token, "-option2", &opt2) == osErrNoErr)
 {

 7 Declare a temporary floating-point (double) value to hold the number passed in and then declare a
temporary string to hold the converted number for display. Get the value of op2 as a decimal then print it
to the tempText variable.

 double tempValue;
 char tempText[128];
 lasso_typeGetDecimal(token, opt2, &tempValue);
 sprintf(tempText, "%.15lg", tempValue);

 8 Append the parameter’s information to the return string.

 lasso_typeAppendString(token, " The value of -option2 is ", 26);
 lasso_typeAppendString(token, tempText, strlen(tempText));
 }

 9 Now, we’re going to look for the unnamed parameter. Because there’s no way to ask for unnamed
parameters, we’re going to enumerate through all the parameters looking for one without a name. The
integer count will hold the number of parameters found. Use lasso_getTagParamCount() to find out how
many parameters were passed into our tag. The variable count now contains the number 3, if we were
indeed passed three parameters.

 int count = 0;

 lasso_getTagParamCount(token, &count);

 for (int i = 0; i < count; ++i) {

 10 Use lasso_getTagParam() to retrieve a parameter by its index. If you design tags that require parameters
to be in a particular order, then use this function to retrieve parameters by index, starting at index 0. If
the parameter is unnamed, that means it’s the one needed. Note that if the user passes in more than one
unnamed parameter, this loop will find all of them, and will ignore any named parameters.

 lasso_getTagParam(token, i, &v);
 if (v.dataSize == 0)
 {

 11 Again, append a descriptive line of text about the unnamed parameter and it’s value. Notice that the name
member of the variable is what holds the text we’re looking for, and the data member is empty.

 lasso_typeAppendString(token, " The value of unnamed param is ", 31);
 lasso_typeAppendString(token, v.name, v.nameSize);
 }
 }

 12 Returning an error code is very important. If you return a non-zero error code, then the interpreter
will throw an exception indicating that this tag failed fatally and Lasso’s standard page error routines
will display an error message. For non-fatal errors, you can use lasso_setResultCode() and lasso_
setResultMessage() to provide error codes for the caller; just make sure your tag function returns osErrNoErr
from your function, otherwise Lasso’s fatal error routines will be triggered.

 return lasso_returnTagValue(token, retString);
}

7 4 0

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 1 – L C a p i t a g s

7 4 1

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 1 – L C a p i t a g s

62
Chapter 62

LCAPI Data Types

This chapter includes information about creating data types in C/C++ using the Lasso C/C++ API (LCAPI).

	 •	Data Type Operation discusses how new data types can be implemented in C/C++.

	 •	Data Type Tutorial walks through a sample data type project.

Data Type Operation
Creating a new data type in LCAPI 8 is similar to creating a substitution tag. When Lasso Professional 8 starts
up, it scans the LassoModules folder for module files (Windows DLLs or Mac OS X DYLIBS). As it encounters
each module, it executes the registerLassoModule() function for that module. The developer registers the
LCAPI data types or tags implemented by the module inside this function. Registering data type initializers
differs from registering normal substitution tags in that the third parameter in lasso_registerTagMode is the
value REG_FLAGS_TYPE_DEFAULT.

void registerLassoModule()
{
 lasso_registerTagModule("test", "type", myTypeInitFunc,
 REG_FLAGS_TYPE_DEFAULT, "simple test LCAPI type");
}

The prototype of a LCAPI type initializer is the same as a regular LCAPI substitution tag function. Lasso will
call the type initializer each time a new instance of the type is created.

osError myTypeInitFunc(lasso_request_t token, tag_action_t action);

When the type initializer function is called, a new instance of the type is created using lasso_
typeAllocCustom. This new instance will be created with no data or tag members.

osError myTypeInitFunc(lasso_request_t token, tag_action_t action)
{
 lasso_type_t theNewInstance = NULL;
 lasso_typeAllocCustom(token, &theNewInstance, "test_type");

Once the type is created, new data and tag members can be added to it using lasso_typeAddMember. Data
members can be of any type and should be allocated using any of the LCAPI type allocation calls. Tag
members are allocated using lasso_typeAllocTag. LCAPI tag member functions are implemented just like any
other LCAPI tag. In the example below, myTagMemberFunction is a function with the standard LCAPI tag
prototype.

7 4 2

L a s s o 8 . 5 L a n g u a g e g u i d e

 const char * kStringData = "This is a string member.";
 lasso_type_t stringMember = NULL;
 lasso_typeAllocString(token, &stringMember, kStringData, strlen(kStringData));
 lasso_typeAddMember(token, theNewInstance, "member1", stringMember);
 lasso_type_t tagMember = NULL;
 lasso_typeAllocTag(token, &tagMember, myTagMemberFunction);
 lasso_typeAddMember(token, theNewInstance, "member2", tagMember);

The final step in creating a new LCAPI data type instance is to return the new type to Lasso as the tag’s return
value. After the type is returned, Lasso will complete the creation of the type by instantiating the new type’s
parent types.

 lasso_returnTagValue(token, theNewInstance);
 return osErrNoErr;
}

Data Type Tutorial
This tutorial walks through the main points of creating a custom data type using LCAPI 7. The resulting
data type is a “file” type, and the ability to open, close, read and write to the file are implemented via the
following member tags:

[File->Open] [File->Close] [File->Read] [File->Write]

Data Types Code
The example project and source files contain over 800 lines of code, and are located in the following folder:

Lasso Professional 8/Documentation/3 - Language Guide/Examples/LCAPI/Tags/CAPIFile

Do to the length of the project file (CAPIFile.cpp), the entire code is not shown here. The Data Type Walk
Through section provides a conceptual overview of the operation behind the file type example, and describes
the basic LCAPI functions used to implement it.

Note: This walk through is not fully up-to-date with the sample code in the documentation folder . The walk
through should serve as a useful road map, but the sample code should be read separately to see how it has
been updated for LCAPI 8 .

Data Type Walk Through
This section provides a step-by-step conceptual walk through for building a custom file data type.

To build a custom data type:

 1 The first step in creating a custom type is to register the type’s initializer. Type initializers are registered in
the same way that regular tag functions are registered. The only difference being that flag_typeInitializer
should be passed for the fourth (flags) parameter.

This concept is illustrated in lines 95-129 of the CAPIFile.cpp file.

void registerLassoModule()
{
 …
 lasso_registerTagModule("example", "file", file_init,
 REG_FLAGS_TYPE_DEFAULT, "Initializer for the file type.");
}

 2 The registered type initializer will be called each time a new file type is created. In the above case, the
LCAPI function file_init was registered as being the initializer. The prototype for file_init should look like
any other LCAPI function.

This concept is illustrated in line 272 of the CAPIFile.cpp file.

7 4 3

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 2 – L C a p i d a t a t y p e s

osError file_init(lasso_request_t token, tag_action_t action)

 3 The file_init function will now be called whenever the example_file type is used in a script. Within the
type initializer, the type’s member tags are added. Each member tag is implemented by its own LCAPI
tag function. However, before members can be added, the new blank type must be created using lasso_
typeAllocCustom.

lasso_typeAllocCustom can only be used within a properly registered type initializer. The value it produces
should always be the return value of the tag as set by the lasso_returnTagValue function.

This concept is illustrated in lines 273-277 of the CAPIFile.cpp file.

{
 lasso_type_t file;
 …
 lasso_typeAllocCustom(token, &file, KFileTypeName);

 4 Once the blank type has been created, members can be added to it. LCAPI data types often need to store
pointers to allocated structures or memory. LCAPI provides a means to accomplish this by using the lasso_
setPtrMember and lasso_getPtrMember functions. These functions allow the developer to store a pointer
with a specific name. The pointer is stored as a regular integer data member. The names of all pointer
members should begin with an underscore. Naming a pointer as such will indicate to Lasso that it should
not be copied when a copy is made of the data type instance. This LCAPI file type will store its private data
in a structure called file_desc_t.

This concept is illustrated in lines 280-281 of the CAPIFile.cpp file.

 file_desc_t * desc = new file_desc_t;
 lasso_setPtrMember(token, file, kPrivateMember, desc);

 5 Members are also added for open, close, read and write.

 lasso_type_t mem;
 lasso_typeAllocTag(token, &mem, file_open);
 lasso_typeAddMember(token, file, "open", mem);

 lasso_typeAllocTag(token, &mem, file_close);
 lasso_typeAddMember(token, file, "close", mem);

 lasso_typeAllocTag(token, &mem, file_read);
 lasso_typeAddMember(token, file, "read", mem);

 lasso_typeAllocTag(token, &mem, file_write);
 lasso_typeAddMember(token, file, "write", mem);

This concept is illustrated in lines 286-295 of the CAPIFile.cpp file. The macro ADD_TAG is defined and
used to avoid the more repetitive activities.

 #define ADD_TAG(NAME, FUNC) { lasso_type_t mem;\
 lasso_typeAllocTag(token, &mem, FUNC);\
 lasso_typeAddMember(token, file, NAME, mem);\
 }

 …

 ADD_TAG(kMemOpen, file_open);
 ADD_TAG(kMemClose, file_close);
 ADD_TAG(kMemRead, file_read);
 ADD_TAG(kMemWrite, file_write);

 6 The final member tag to add is the onDestroy member. This tag will be called automatically by Lasso when
the type goes away. Adding this tag will ensure that the file on disk is closed properly if the member tag
function file_close is not called.

This concept is illustrated in line 309 of the CAPIFile.cpp file.

 ADD_TAG(kMemOnDestroy, file_onDestroy);

7 4 4

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 2 – L C a p i d a t a t y p e s

 7 At this point, the return value should be set. Keep in mind that the new file type is completely blank
except for the members that were added above. No inherited members are available at this point. Inherited
members are only added after the LCAPI type initializer returns.

This concept is illustrated in line 312 of the CAPIFile.cpp file.

lasso_returnTagValue(token, file);

 8 There were no errors in the type initialization process, so return a “no error” code to Lasso, completing the
type’s initialization.

This concept is illustrated in line 313 of the CAPIFile.cpp file.

return osErrNoErr;

Note: For brevity, this example will not cover accepting parameters in the type’s onCreate member tag . The
full CAPIFile project illustrates accepting parameters in the onCreate member to open the file under various
read and write permissions .

 9 The new file type has now been initialized and made available to the caller in the script. The first member
of the file type is [File->Open], which is implemented as the LCAPI function file_open.

This concept is illustrated in lines 365-366 of the CAPIFile.cpp file.

osError file_open(lasso_request_t token, tag_action_t action)
{

 10 The first step in implementing a member tag is to acquire the “self” instance. The self is the instance upon
which the member call was made.

This concept is illustrated in lines 367-370 of the CAPIFile.cpp file.

lasso_type_t self = NULL;
lasso_getTagSelf(token, &self);
if (!self)
 return osErrInvalidParameter;

 11 Once the self is successfully acquired and is not null, the rest of the member tag can proceed. This member
tag accepts one parameter, which is the path to the file that will be opened. Since the path is a string value,
it can be acquired using lasso_getTagParam. If the path parameter was not passed to the open member tag,
an error should be returned and indicated to the user.

This concept is illustrated in lines 380-396 of the CAPIFile.cpp file.

 // see what parameters we are being initialized with
 int count;
 lasso_getTagParamCount(token, &count);
 if (count < 2)
 {
 lasso_setResultMessage(token,
 "file->open requires at least a file path and open mode.");
 lasso_setResultCode(token, osErrInvalidParameter);
 return osErrInvalidParameter;
 }
 if (count > 0) // we are given *at the least* a path
 {
 // first param is going to be a string, so use the LCAPI 7 call to get it
 auto_lasso_value_t pathParam;
 pathParam.name = "";
 lasso_getTagParam(token, 0, &pathParam);

 12 Now that the path parameter has been successfully acquired, permissions should be checked to make sure
access to the file is permitted by Lasso security.

This concept is illustrated in lines 232-237 of the CAPIFile.cpp file.

7 4 5

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 2 – L C a p i d a t a t y p e s

if (lasso_operationAllowed(token, op, const_cast<char*>(path)) != osErrNoErr)
{
 lasso_setResultMessage(token,
 "Permission to open the file was denied by Lasso security.");
 lasso_setResultCode(token, osErrNoPermission);
 return NULL;
}

 13 If the current user has permission, the Lasso internal path should be converted to the platform specific
path. This is a three-step process that begins with fully qualifying the path. This will ensure that relative
paths are converted to root paths. The second step is to resolve the path. This converts root path to a
complete path which will include the hard drive name, or /// if used on a Unix platform. The final step is
to convert the path into a platform-specific format that will be understood by the platform-specific [File-
>Open] calls.

This concept is illustrated in lines 197-203 of the CAPIFile.cpp file.

{
 osPathname qualifiedPath;
 osPathname resolvedPath;
 lasso_fullyQualifyPath(token, inPath, qualifiedPath);
 lasso_resolvePath(token, qualifiedPath, resolvedPath);
 lasso_getPlatformSpecificPath(resolvedPath, outPath);
}

 14 Once security is checked and the path is properly converted, the actual file can be opened using the file
system calls supplied by the operating system.

This concept is illustrated in line 242 of the CAPIFile.cpp file.

FILE * f = fopen(xformPath, openMode);

 15 The FILE pointer can now be retrieved using the lasso_typeGetCustomPtr LCAPI function. No error has
occurred while opening the file, so complete the function call and return “no error”.

This concept is illustrated in lines 426 of the CAPIFile.cpp file.

return osErrNoErr;

 16 The remaining tag functions are implemented in a similar manner. Study the CAPIFile example for a more
in-depth and complete example of how to properly construct custom data types in LCAPI 8.

7 4 6

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 2 – L C a p i d a t a t y p e s

63
Chapter 63

LCAPI Data Sources

This chapter includes information about creating data source connectors in C/C++ using the Lasso C/C++ API
(LCAPI).

	 •	Data Source Connector Operation discusses how data source connectors can be implemented in C/C++.

	 •	Data Source Connector Tutorial walks through a sample project included with every Lasso installation.

Data Source Connector Operation
When Lasso Professional 8 starts up, it looks for module files (Windows DLLs or Mac OS X DYLIBS) in
the LassoModules folder. As Lasso encounters each module, it executes the module’s registerLassoModule()
function once and only once. It is your job as an LCAPI developer to write code to register each of your new
data source (or custom tag) function entry points in this registerLassoModule() function. Both substitution
tags and data sources may be registered at the same time, and the code for them can reside in the same
module. The only difference between registering a data source and a substitution tag is whether you call
lasso_registerTagModule() or lasso_registerDSModule().

Data sources are a bit more complex than substitution tags because Lasso Service calls them with many
different actions during the course of various database operations. Whereas a substitution tag only needs
to know how to format itself, a data source needs to enumerate its tables, search through records, add new
records, delete records, etc. Even so, this added complexity is easily handled with a single switch() statement, as
you will see in the following tutorial.

Data Source Connectors and Lasso Administration
Once a custom data source connector module is registered by Lasso, it will appear in the Setup > Data
Sources > Connectors section of Lasso Site Administration. If a connector appears here, then it has been
installed correctly.

The administrator adds the data source connection information to the Setup > Data Sources > Hosts
section of Lasso Site Administration, which sets the parameters by which Lasso connects to the data source
via the connector. This information is stored in the Lasso_Internal Lasso MySQL database, where the connector
can retrieve and use the data via function calls.

The data that the administrator can submit in the Setup > Data Sources > Hosts section of Lasso Site
Administration includes the following:

	 •	Name – The administrator-defined name of the data source host.

	 •	Connection URL – The URL string required for Lasso to connect to a data source via the connector. This
typically includes the IP address of the machine hosting the data source.

	 •	Connection Parameters – Additional parameters passed with the Connection URL. This can include the
TCP/IP port number of the data source.

	 •	Status – Allows the administrator to enable or disable the connector in Lasso Professional 5.

7 4 7

L a s s o 8 . 5 L a n g u a g e g u i d e

	 •	Default Username – The data source username required for Lasso to gain access to the data source.

	 •	Default Password – The data source password required for Lasso to gain access to the data source.

The Connection URL, Connection Parameters, Default Username, and Default Password values are passed to the data
source via the lasso_getDataHost function, which is described later in this chapter.

LCAPICALL osError lasso_getDataHost(lasso_request_t token,
 auto_lasso_value_t * host, auto_lasso_value_t * usernamepassword);

Data Source Connector Tutorial
This section provides a walk-through of an example data source to show how some of the LCAPI features are
used. This code will be most similar to the sample SampleDataSource project, so if you want to actually build
this code, then you should copy that project folder and edit the project files inside it.

The data source will simply display some simple text as each portion is called from a Lasso inline which
does a simple database search. It is not an effective or useful data source; it’s meant to just provide an
overview of what functions must be implemented. The sample data source will simulate a data source which
has two databases, an Accounting database and a Customers database. Each of those databases in turn will
report that it has a few tables within it. For a more complete example of a data source that is useful, look at
the MySQLDataSource project.

Data Source Connector Code
Below is the code for the substitution tag module. Line numbers are provided to the left of each line of code,
and are referenced in the Data Source Connector Walk Through section.

7 4 8

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 3 – L C a p i d a t a s o u r C e s

 void registerLassoModule(
 {
 lasso_registerDSModule("SampleDatasource", sampleDS_func, 0);
 }
 osError sampleDS_func(lasso_request_t token, datasource_action_t action, const auto_lasso_value_t *param)
 {
 osError err = osErrNoErr;
 auto_lasso_value_t v1, v2;
 switch(action)
 {
 case datasourceInit:
 break;
 case datasourceTerm:
 break;
 case datasourceNames:
 lasso_addDataSourceResult(token, "Accounting");
 lasso_addDataSourceResult(token, "Customers");
 break;
 case datasourceExists:
 if((strcmp(param->data, "Accounting") != 0)
 && (strcmp(param->data, "Customers") != 0))
 err = osErrWebNoSuchObject;
 break;
 case datasourceTableNames:
 if(strcmp(param->data, "Accounting") == 0) {
 lasso_addDataSourceResult(token, "Payroll");
 lasso_addDataSourceResult(token, "Payables");
 lasso_addDataSourceResult(token, "Receivables");
 }
 if(strcmp(param->data, "Customers") == 0) {
 lasso_addDataSourceResult(token, "ContactInfo");
 lasso_addDataSourceResult(token, "ItemsPurchased");
 }
 break;
 case datasourceSearch:
 lasso_getDataSourceName(token, &v1);
 lasso_getTableName(token, &v2);
 if(strcmp(v1.data, "Accounting") == 0) {
 int count, i;
 lasso_getInputColumnCount(token, &count);
 for(i=0; i<count; i++) {
 auto_lasso_value_t columnItem;
 lasso_getInputColumn(token, i, &columnItem);

 if(strcmp(v2.data, "Payroll") == 0) {
 char *row1[] = {"Samuel Goldwyn", "1955-03-27", "15000.00"};
 unsigned int sizes1[3] = {14, 10, 8};
 lasso_addColumnInfo(token, "Employee", false, typeChar, kProtectionNone);
 lasso_addColumnInfo(token, "StartDate", false, typeDateTime, kProtectionNone);
 lasso_addColumnInfo(token, "Wages", false, typeDecimal, kProtectionNone);
 lasso_addResultRow(token, (const char **)&row1, (unsigned int *)&sizes1, (int)3);
 lasso_setNumRowsFound(token, 1);
 }
 }
 if(strcmp(v1.data, "Customers") == 0) {
 }
 break;
 case datasourceAdd:
 lasso_outputTagData(token, "datasourceAdd was called to append a record
");
 break;
 case datasourceUpdate:

7 4 9

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 3 – L C a p i d a t a s o u r C e s

 lasso_outputTagData(token, "datasourceUpdate was called to replace a record
");
 break;
 case datasourceDelete:
 lasso_outputTagData(token, "datasourceDelete was called to remove a record
");
 break;
 case datasourceInfo:
 lasso_outputTagData(token, "datasourceInfo was called
");
 break;
 case datasourceExecSQL:
 lasso_outputTagData(token, "datasourceExecSQL was called
");
 break;
 }
 return err;
 }

Data Source Connector Walk Through
This section provides a step-by-step walk through for building the data source connector.

To build a sample LCAPI Data Source Connector:

 1 Register the new data source in the required registerLassoModule() export function. It’s similar to the way you
register a substitution tag.

 void registerLassoModule()
 {
 lasso_registerDSModule("SampleDatasource", sampleDS_func, 0);
 }

 2 Now implement sampleDS_func, the function which gets called when any database operations are
encountered.

 osError sampleDS_func(lasso_request_t token, datasource_action_t action, const auto_lasso_value_t *param)

All data source functions have this prototype. When your data source function is called, it’s passed an
opaque “token” data structure, an integer “action” telling it what it should do, and an optional parameter
which sometimes contains extra information (like a database name) needed by the action being requested
at that time.

 3 Set a default error return value that indicates no error. Returning a non-zero value will cause the Lasso
Professional engine to report a fatal error and stop processing the page.

 {
 osError err = osErrNoErr;
 auto_lasso_value_t v1, v2;
 switch(action)
 {

Declare a couple of temporary variables to be used later to retrieve important values such as database
names and table names. This function gets called with various different actions as Lasso Professional
requests information from our data source. This switch statement distinguishes between those various
actions.

 4 datasourceInit is called once when Lasso Professional starts up. This gives us a chance to initialize any
communications with our database back-end, and set any global variables (including semaphores) we’ll
need later. This is called once when Lasso Professional starts up. Because this data source is so simple, it
needs no special initialization calls.

7 5 0

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 3 – L C a p i d a t a s o u r C e s

 case datasourceInit:
 break;
 case datasourceTerm:
 break;
 case datasourceNames:
 lasso_addDataSourceResult(token, "Accounting");
 lasso_addDataSourceResult(token, "Customers");
 break;
 case datasourceExists:
 if((strcmp(param->data, "Accounting") != 0)
 && (strcmp(param->data, "Customers") != 0))
 err = osErrWebNoSuchObject;
 break;

datasourceTerm is called once when Lasso Professional shuts down. Because this data source is so simple, it
needs no special shutdown code. Normally you would close your connection to your back-end data source
and release any semaphores you created.

datasourceNames is called whenever Lasso Professional needs to get a list of databases which your data
source provides access to. The developer must write code that discovers a list of all the databases your
database ’knows about’ and call lasso_addDataSourceResult() once for each found database, passing the name
of the database. If the data source deals with five databases, then you would call lasso_addDataSourceResult()
five times, once for each database name.

Because we are simulating a data source which knows about the Accounting and Customers databases, call
lasso_addDataSourceResult() to add Accounting and Customers to the returned list of database names.

For datasourceExists, Lasso Professional is asking use if we know a particular database exists (meaning, do we
control this database). The name of the database we should look up is passed in the C-string param->data. If
we don’t know about the database in question, then return osErrWebNoSuchObject. The conditional statement
does a simple string comparison against our hard-coded database name Accounting, and then against our
hard-coded database name Customers. If neither of the previous string comparisons matched, then return
the error code osErrWebNoSuchObject indicating that we do not know anything about the requested database.

 5 Lasso Professional will also need to call on the database tables once per database, passing the database
name in the param->data value. datasourceTableNames enumerates the list of tables within that named
database.

 case datasourceTableNames:
 if(strcmp(param->data, "Accounting") == 0) {
 lasso_addDataSourceResult(token, "Payroll");
 lasso_addDataSourceResult(token, "Payables");
 lasso_addDataSourceResult(token, "Receivables");
 }

The conditional statement checks to see if we are being asked about our Accounting database, and if so adds
the Payroll table to the list of known tables by calling lasso_addDataSourceResult(), and so forth.

 6 Next, Lasso Professional will need to check to see if there are inquiries regarding the Customers database.

 if(strcmp(param->data, "Customers") == 0) {
 lasso_addDataSourceResult(token, "ContactInfo");
 lasso_addDataSourceResult(token, "ItemsPurchased");
 }
 break;

Lasso Professional adds the ContactInfo table to the list of known tables by calling lasso_addDataSourceResult().
Continue adding table names to the Customers database by calling lasso_addDataSourceResult(), this time for
the ItemsPurchased table.

 7 Use datasourceSearch to perform a search on the database.

7 5 1

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 3 – L C a p i d a t a s o u r C e s

 case datasourceSearch:
 lasso_getDataSourceName(token, &v1);
 lasso_getTableName(token, &v2);
 if(strcmp(v1.data, "Accounting") == 0) {
 int count, i;
 lasso_getInputColumnCount(token, &count);
 for(i=0; i<count; i++) {
 auto_lasso_value_t columnItem;
 lasso_getInputColumn(token, i, &columnItem);
 }
 }

All of the information (database and table names, search arguments, sort arguments, etc.) can be retrieved,
and a search can be performed by calling various LCAPI functions such as lasso_getDataSourceName() and
lasso_getTableName() to get the name of the database and table, respectively. A complete list of data source
functions is here.

lasso_getDataSourceName asks Lasso Professional to give us the database name which is to be searched.
This is often the value of the -Database parameter value in an inline tag. lasso_getTableName asks Lasso
Professional to give us the table name to be searched. This is often the value from the -Layout or -Table
parameter value from an inline tag.

The conditional statement checks to see if the database being searched is Accounting. If so, declare a couple
of temporary integers, one for holding the number of search parameters. lasso_getInputColumnCount asks Lasso
how many search fields (columns) were specified by the user for this search. For instance, if the Lasso inline
tag passed three different fields to be searched, then lasso_getInputColumnCount() returns 3.

Declare a temporary variable which will receive the name/value pair information from the next line of
code. Retrieve the name/value text for the nth requested search parameter. For instance, an inline will fill
the columnItem variable with the values Employee, fred the first time through the loop, and Wages, 15000 the
second time through the loop.

[Inline: -Database='Accounting', -Table='Payroll', 'Employee'='fred', 'Wages'='15000']

 8 Next, set a conditional statement to ask if the Payroll table is being searched. If so, we’ll set up some fake
hard-coded data in the next few lines of code. Declare an array of strings which represents the three fields
we will return for this search. Declare an array of field sizes to match the lengths of the strings created on
the previous line.

7 5 2

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 3 – L C a p i d a t a s o u r C e s

 if(strcmp(v2.data, "Payroll") == 0) {
 char *row1[] = {"Samuel Goldwyn", "1955-03-27", "15000.00"};
 unsigned int sizes1[3] = {14, 10, 8};
 lasso_addColumnInfo(token, "Employee", false, typeChar, kProtectionNone);
 lasso_addColumnInfo(token, "StartDate", false, typeDateTime, kProtectionNone);
 lasso_addColumnInfo(token, "Wages", false, typeDecimal, kProtectionNone);
 lasso_addResultRow(token, (const char **)&row1, (unsigned int *)&sizes1(int)3);lasso_setNumRowsFound(token, 1);
 }
 }
 if(strcmp(v1.data, "Customers") == 0) {
 }
 break;
 case datasourceAdd:
 lasso_outputTagData(token, "datasourceAdd was called to append a record
");
 break;
 case datasourceUpdate:
 lasso_outputTagData(token, "datasourceUpdate was called to replace a record
");
 break;
 case datasourceDelete:
 lasso_outputTagData(token, "datasourceDelete was called to remove a record
");
 break;
 case datasourceInfo:
 lasso_outputTagData(token, "datasourceInfo was called
");
 break;
 case datasourceExecSQL:
 lasso_outputTagData(token, "datasourceExecSQL was called
");
 break;
 }
 return err;
 }

lasso_addColumnInfo tells LCAPI what the column names and data types are. Do this by calling
lasso_addColumnInfo() once per column. In this line, the Employee column is described as text (typeChar) with
no protection (kProtectionNone). In the next line, the StartDate column is described as date (typeDateTime) with
no protection (kProtectionNone).

The last column Wages is described as being numeric (typeDecimal), with no protection (kProtectionNone). Now
lasso_addResultRow() can be called as many times as there are rows of data to return. In this case, only one
row is returned. Now LCAPI must be told how many total rows were found.

7 5 3

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 3 – L C a p i d a t a s o u r C e s

64
Chapter 64

Lasso Connector Protocol

This chapter documents Lasso Connector Protocol (LCP) and describes how to develop Lasso Web server
connectors.

	 •	Overview introduces Lasso Connector Protocol.

	 •	Requirements includes platform specific development environment details.

	 •	Lasso Web Server Connectors introduces the theory of operation behind creating Lasso Web server
connectors using LCP.

	 •	Lasso Connector Operation describes the theory and operation behind building Lasso Web server
connectors.

	 •	Lasso Connector Protocol Reference provides a reference of all commands and parameters used in LCP.

Overview
Lasso Web server connectors are small modules written specifically for a particular brand of Web server. Lasso
Professional 8 initially includes connectors for Microsoft IIS (Intel architecture), Apple Mac OS X’s Apache
(PowerPC architecture), and 4D WebSTAR Server Suite V for Mac OS X. A connector for Red Hat Apache
(Intel architecture) is also available.

The purpose of Lasso Connector Protocol (LCP) is to provide an efficient and platform-independent way of
communication between a Lasso connector (client) and Lasso Service (server). Included are sample projects
which give you full source code to the Web server connectors which ship with Lasso (e.g. Lasso Connector for
IIS and Lasso Connector for Apache).

LassoSoft encourages developers to create and distribute new Web server connectors in order to give Lasso
developers as many choices as possible for developing Lasso-based data-driven Web sites.

Requirements
In order to write your own Lasso Web server connector in C or C++, you will need the following:

Windows:

	 •	Microsoft Windows 2000 or Windows XP Professional

	 •	Microsoft Visual C++ .NET.

	 •	Windows Lasso Professional version 8.0 or higher.

Mac OS:

	 •	Mac OS X 10.3 with GNU C++ compiler and linker (Dev Tools) installed.

	 •	Mac OS X Lasso Professional version 8.0 or higher.

7 5 4

L a s s o 8 . 5 L a n g u a g e g u i d e

Lasso Web Server Connectors
All modern Web servers have some form of suffix mapping, where they re-route HTTP requests to various
modules based on their file suffix (e.g. .lasso). Modules have different names depending on which Web server
you’re using: ISAPI DLL, Apache Module, W*API plugin, etc. Once the Web server calls the Lasso Web server
connector, it is the job of the Lasso Web server connector to collect all the information from a particular
request, and pass it all along to a Lasso Service application that it’s set up to talk to. Then it waits for Lasso
Service to finish processing the request, and receives back some MIME headers and HTML body text. At this
point it’s the connector’s job to pass the text back to the Web server, which in turn sends it back out to the
requesting browser. All communication is via TCP/IP, so the Web server connector and Lasso Service may be
on separate machines with different architectures.

Lasso Web server connectors also have another job, which is to decode and write out HTTP-upload files. As
you examine the sample source code, you’ll see that it interprets the incoming POST arguments, writes out
temporary files, and passes a special list of filename arguments through to Lasso Service on the other side of
the TCP connection.

Note: Only a single Lasso Web server connector can connect with Lasso Service at a time in Lasso Professional 8 .

Getting Started
This section provides a walk-through for building a custom Web server connector in Windows 2000 and Mac
OS X.

To build a sample Web server connector in Windows 2000/XP:

 1 Browse to the Lasso Professional 8\Documentation\3 - Language Guide/
Examples/LCAPI/Connectors/Lasso Connector for IIS folder on the hard drive.

 2 Double-click the ISAPIConnector.sln project file — you need Microsoft Visual C++ .NET in order to open it.

 3 Choose Build/Build Solution to compile and make the ISAPIConnector.dll.

 4 After building, Debug and Release folders will have been created inside your ISAPIConnector project folder.

 5 Open IIS Admin and shut down IIS (so that any previous ISAPIConnector.dll files will not be held open inside
IIS).

 6 Open the Lasso Connector for IIS/Debug folder and drag ISAPIConnector.dll into your Windows/System32 folder.

 7 Restart IIS using the Services menu in the windows Control Panel.

 8 Assuming you already have Lasso installed on this machine, your suffix mappings should all work, and
Lasso should function just as it did before.

 9 Use a Web browser to view http://your.Web.server/ and make sure the .lasso suffix mapping is still working.

To build a sample Web server connector in Mac OS X:

 1 Open a Terminal window.

 2 Change the current folder to the Documentation folder by entering the following:

cd /Applications/Lasso\ Professional\ 7/Documentation/3\ -\ Language\ Guide/Examples/LCAPI/Connectors/Lasso\ Connector\
for\ Apache

 3 Build the sample project using the provided makefile. You must be logged in as the root user to run this
command.

make

 4 After building, a Mac OS X dynamic library file will be in the current folder: Lasso8ConnectorforApache.so.
This is the module you’ll install into the ApacheModules folder.

 5 Copy the newly-created module to the LassoModules folder by entering the following:

cp LassoConnectorforApache.so /usr/libexec/httpd/

 6 Logged in as root user, restart apache so it loads the new module.

7 5 5

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 4 – L a s s o C o n n e C t o r p r o t o C o L

su <enter root password here> apachectl restart

Assuming you already have Lasso installed on this machine, your suffix mappings should all work, and
Lasso should function just as it did before.

 7 In a Web browser, go to http://your.Web.server/ and try a few things to make sure the .lasso suffix mapping is
still working.

Lasso Connector Operation
Communication between the Lasso Web server connector (client) and Lasso Service (server) is achieved by
means of exchanging messages via a regular TCP/IP socket on port 14552. A typical session is initiated by a
client and consists of the following steps:

 1 Connect to Lasso Service host on port 14552.

 2 Send the open request command.

 3 Handle requests sent back from Lasso.

 4 Repeat previous step until the close request command is received.

 5 Close the connection.

All messages to and from Lasso Service begin with the LPCommandBlock structure, and are optionally followed
by an arbitrary number of data bytes if needed. The LPCommandBlock structure is defined as follows:

typedef enum LPCommand;
typedef int LPRequestID;
typedef unsigned int LPSequenceNum;
typedef struct LPCommandBlock
{
 LPCommand fCmd;
 int fResultCode;
 unsigned int fDataSize;
};

The meaning of each LPCommandBlock structure member is explained in the following table.

Table 1: LPCommandBlock Structure Members

Command Description

fCmd The command. For a list of currently defined commands see the Command
Reference at the end of this chapter.

fResultCode The result of the command. Used if the command is a reply.

fDataSize The size of the additional command-specific data to follow (may be zero).

Lasso Connector Protocol Reference

LCP Commands
This section lists all of the commands used in LCP.

cmdProtoErr

Indicates that an error has occurred in the use of the protocol.

Data Required Four-byte integer indicating the error code. Any additional data will be a textual description of
what went wrong.

Sent By Lasso Service

Reply None

7 5 6

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 4 – L a s s o C o n n e C t o r p r o t o C o L

cmdCloseReq

Sent by Lasso Service when there is no more data to be sent to the Web browser.

Data Required None

Sent By Lasso Service or client.

Reply None

cmdGetParam

Request to return the value of a “named” parameter - server/environment variable or an HTTP request.

Data Required RequestParamKeyword as defined in RequestParams.h Then a four-byte integer indicating
the size of the data for the argument. Multiple params may follow.

Sent By Lasso Service

Reply cmdGetParamRep

cmdGetParamRep

Returns the value of a “named” parameter, as requested by cmdGetParam command.

Data Required RequestParamKeyword as defined in RequestParams.h, then a four-byte integer indicating
the size of the character data for the requested param. If multiple params were requested,
the data for each param should follow in the original order.

Sent By client

Reply None

cmdPushData

Push partially processed data to a Web browser.

Data Required The data that should be sent to the web browser.

Sent By LassoService

Reply None

Named Parameters
The following table lists all named parameters used in LCP. These parameters are enumerated in the
RequestParams.h file.

Table 2: Named Parameters

Parameter Description

rpSearchArgKeyword All text in URL after the question mark.

rpUserKeyword Username sent from browser.

rpPasswordKeyword Password sent from browser.

rpAddressKeyword IP address of client browser.

rpPostKeyword HTTP object body (form data, etc.).

rpMethodKeyword GET or POST, depending on <form method>.

rpServerName IP address of server on which the Web server is running.

rpServerPort IP port this hit came to (80 is common, 443 for SSL).

rpScriptName Relative path from server root to this Lasso page.

rpContentType MIME header sent from client browser.

rpContentLength The length in bytes of the POST data sent from <form POST>.

rpReferrerKeyword URL of referring page.

rpUserAgentKeyword Browser name and type.

rpClientIPAddress IP address of client browser.

rpFullRequestKeyword All MIME headers, uninterpreted.

7 5 7

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 4 – L a s s o C o n n e C t o r p r o t o C o L

7 5 8

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 4 – L a s s o C o n n e C t o r p r o t o C o L

X
Section X

Lasso Java API

This section includes instructions for extending the functionality of Lasso by creating new tags, data types,
and Web server connectors written in Java.

	 •	Chapter 65: LJAPI Introduction includes general information about extending Lasso’s functionality.

	 •	Chapter 66: LJAPI Tags discusses how to create new tags in LJAPI including substitution tags, asynchro-
nous tags, and remote procedures.

	 •	Chapter 67: LJAPI Data Types discusses how to create new data types in LJAPI including sub-classing and
symbol overloading.

	 •	Chapter 68: LJAPI Data Sources includes information about how to create new data source in LJAPI.

	 •	Chapter 69: LJAPI Reference includes information about each of the function calls available in LJAPI.

Lasso can also be extended using LassoScript or C/C++. See the preceding sections on the LassoScript API or
the Lasso C/C++ API (LCAPI) for more information..

7 5 9

L a s s o 8 . 5 L a n g u a g e g u i d e

65
Chapter 65

LJAPI Introduction

This chapter provides an introduction to the Lasso Java API (LJAPI) which allows new tags, data types, and
data source connectors to be written in Java.

	 •	Overview introduces the Lasso Java API.

	 •	What’s New discusses what’s new in this version of LJAPI.

	 •	LJAPI vs LCAPI discusses when modules should be implemented in C/C++ versus Java.

	 •	Requirements includes system requirements for building LJAPI modules.

	 •	Getting Started includes basic information about how to build LJAPI modules.

	 •	Debugging includes information about how to debug LJAPI modules within Lasso.

	 •	Frequently Asked Questions includes several frequently asked questions and answers.

Overview
The Lasso Java Application Programming Interface (LJAPI) lets you write Java code to add new Lasso tags,
data source connectors, and data types to Lasso Professional 8. LJAPI is similar to LCAPI, but is tailored for
the Java language.

Custom tags written in LJAPI instantly support each platform. One of the important reasons for developing
LJAPI modules is an enormous class library included with each Java VM install, covering almost every single
programming need, from text processing to 2D/3D imaging to various network protocol implementations.

This chapter provides a walk-through for building an example substitution tag in LJAPI. Source code for
the ZipCountTag module, as well as the code for the substitution tag, data source connector, and data type
examples are included in the Lasso Professional 8/Documentation/4-ExtendingLasso/LJAPI folder on the hard drive.

What’s New
Lasso Professional 8 includes some minor enhancements over the version of LJAPI that shipped with Lasso
Professional 6. This section provides a quick summary of the history of LJAPI.

	 •	LJAPI – LJAPI was introduced with Lasso Web Data Engine 3 in October 1998. Modules created using
this version of LJAPI are generally compatible with all versions of Lasso from 3 through 6. This API is
sometimes referred to as LJAPI 5.

Lasso Professional 5 included some minor enhancements to LJAPI from Lasso WDE 3.x, but the API
remained largly unchanged. Lasso Professional 5 also introduced the Lasso C/C++ API (LCAPI) for C/C++
programmers.

	 •	LJAPI 6 – Lasso Professional 6 included a complete rewrite of LJAPI. The most important change in
LJAPI 6 is that it is now built upon LCAPI. Both API’s share the same functionality and provide a single
programming interface, making it easier for developers who wish to learn both APIs.

7 6 0

L a s s o 8 . 5 L a n g u a g e g u i d e

Lasso Professional 6 shipped with support for both LJAPI 5 (and earlier) modules and LJAPI 6 modules.

	 •	LJAPI 7 – Lasso Professional 7 supports all modules created with LJAPI 6. There are some minor
enhancements to the APIs, but no significant changes over the previous version. Lasso Professional 7 did
not support modules written for LJAPI 5 or earlier.

	 •	LJAPI 8 – Lasso Professional 8 supports all modules created with LJAPI 6 or 7. There are some minor
enhancements to the APIs, but no significant changes over the previous version. Lasso Professional 8 does
not support modules written for LJAPI 5 or earlier.

Each new release of Lasso brings enhancements to the Lasso programming language, built-in data types, data
sources, LCAPI, and more. While the basic API for LJAPI is not exepcted to change significantly post-LP6, new
releases of LJAPI may include support for any new features of Lasso or LCAPI that can be expressed in the
API.

Modules written to the LJAPI 6 specifications should be compatible with Lasso Professional 8. Modules
written to the LJAPI 7 specifications should be compatible with Lasso Professional 6 provided that no LP7-
specific features are accessed. Modules written to the LJAPI 5 (or earlier) specifications will not work in Lasso
Professional 8.

LJAPI vs. LCAPI
Developers who have experience creating LCAPI modules will find themselves familiar with the Lasso Java
API. Similarly, Java developers who learn to use LJAPI 7 will find it easy to write LCAPI modules once they are
ready to make a transition to a different language.

The following sections outlines a few basic differences between LCAPI 7 and LJAPI 7.

LJAPI is Object-Oriented
The majority of Lasso API functions must be aware of the current Lasso state in order to operate correctly. In
order to solve the problem resulting from the non-OO nature of the C-based Lasso API, LCAPI introduced the
token concept. When Lasso calls one of the methods implemented by an LCAPI module, it passes an opaque
parameter of type lasso_request_t, which encapsulates the information about the current state of the request.
The module then makes calls to Lasso while passing the token in the first parameter to every API function.

In LJAPI 7, the same state information is stored in an instance of the LassoCall Java class. All LJAPI 7 functions
are implemented as members of the LassoCall class, which eliminates the need to pass a token parameter with
each call.

This results in one of the most notable differences between LJAPI and LCAPI, in that LJAPI methods usually
take one parameter less that their native LCAPI counterparts.

LJAPI Uses Shorter Function Names
In LCAPI, function names begin with the lasso_ prefix, reflecting the name space in which they reside.
However, the corresponding LJAPI methods are implemented as members of LassoCall class. For this reason,
the lasso_ prefix has been removed from all Java method names.

The following shows the lasso_getTagName function in LCAPI:

lasso_getTagName(lasso_request_t token, auto_lasso_value_t &name);

The following shows the equivalent getTagName method in LJAPI:

getTagName(LassoValue name);

Tokenless LCAPI Functions are Static Methods in LJAPI
There are few LCAPI functions that do not take the token state parameter. These functions are implemented
in LJAPI as static methods of the LassoCall class:

7 6 1

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 5 – L J a p i i n t r o d u C t i o n

The following shows the lasso_registerConstant function in LCAPI:

osError lasso_registerConstant(const char * name, lasso_type_t val);

The following shows the equivalent registerConstant method in LJAPI:

int LassoCall.registerConstant(String name, LassoTypeRef val);

LJAPI Does Not Use Function Pointers
Some LCAPI functions use a function pointer parameter of type lasso_tag_func. Since function pointers do not
exist in Java, the corresponding LJAPI methods instead accept a pair of string parameters that specify the class
and method name.

The following shows the lasso_typeAllocTag function in LCAPI:

osError lasso_typeAllocTag (lasso_request_t token, lasso_type_t * outTag, lasso_tag_func nativeTagFunction);

The following shows the equivalent typeAllocTag method in LJAPI:

int typeAllocTag (LassoTypeRef outTag, String className, String methodName);

Requirements
In order to write your own Lasso substitution tags, data source connectors, or custom data types in Java, you
will need the following:

Windows
	 •	Microsoft Windows 2000, Microsoft Windows XP Professional, or better.

	 •	Java 2 SDK 1.4 or higher.

	 •	Windows Lasso Professional 8 or higher.

Mac OS
	 •	Mac OS X with Java 2 SDK installed (included).

	 •	Mac OS X Lasso Professional 8 or higher.

Getting Started
This section provides a walk-through for building sample LJAPI tag modules in Windows 2000/XP and Mac
OS X.

To build a sample LJAPI tag module using Apache Ant:

Apache Ant is a de-facto standard Java-based build tool, part of the Apache open-source initiative.

In order to build the sample code, you will need to install complete Ant package, downloadable from the
following location:

http://ant.apache.org/

If you do not wish to install Apache Ant at this time, you can skip to the next section for instructions on
building the code examples with the javac compiler tool.

Note: All LJAPI examples have been tested with the most recent stable version of the Ant tool (v1 .5 .2) available
at the time of the Lasso Professional 8 release .

7 6 2

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 5 – L J a p i i n t r o d u C t i o n

To build all included code examples:

 1 Launch the command prompt (Windows 2000/XP), or open the Terminal application (Mac OS X)

 2 Locate the following folder in the hard drive:

Lasso Professional 8/Documentation/4-ExtendingLasso/LJAPI/Sample Code

 3 Make this folder your current working directory.

 Windows:

 cd "C:\Program Files\OmniPilot Software\Lasso Professional 8\Documentation\4-ExtendingLasso\LJAPI\Sample Code"

 Mac OS X:

 cd "/Applications/Lasso Professional 8/Documentation/4-ExtendingLasso/LJAPI/Sample Code"

 4 Invoke Ant tool by entering the “ant” command at the command prompt, optionally followed by the target
(sub-project) name:

ant <target-name>

 Compiled LJAPI modules will be placed in the Modules (output) folder located inside the Sample Code
directory.

 5 To install sample LJAPI modules using the Ant tool, enter the following command at the command
prompt:

ant install

 Sample LJAPI modules can also be installed manually, by dragging one or more Java class/jar files from the
Modules (output) folder to the LassoModules folder.

 6 Restart Lasso Professional.

Please note that, when launched without an optional target name parameter (step 4), Ant will execute the
default target defined in the “build.xml” descriptor file. This target has been pre-configured to compile all
sample LJAPI modules. Individual modules can be also built separately by specifying one of the following
target names on the command line: zipcount, zip, pdf, nntp, mysql, xml or docs.

Two special targets (clean and install) can be used for deleting the contents of the Modules (output) directory, and
copying LJAPI modules to the LassoModules folder, respectively.

For further details, please see the contents of the build.xml descriptor file.

Alternately, you can also build the ZipCountTag module using the <javac> command-line tool included with
Java SDK from Sun Microsystems.

To build ZipCountTag module using the <javac> command-line tool:

 1 Launch the Windows 2000/XP command prompt.

 2 Make the following folder your current directory.

C:\Program Files\OmniPilot Software\Lasso Professional 8\
Documentation\4-ExtendingLasso\LJAPI\Sample Code\Substitution Tags\ZipCountTag

 3 Enter the path of the Java compiler tool javac, followed by the -classpath option keyword and the path to the
LJAPI.jar file (contains all Java classes used by LJAPI modules), followed by the ZipCountTag module source
file path:

javac -classpath ../../../../../../LassoModules/LJAPI.jar ZipCountTag.java

 If Java SDK has been installed in the jdk1.4 folder, your command line might look like this:

C:\jdk1.4\bin\javac -classpath ..\LJAPI.jar ZipCountTag.java

 4 After building, a ZipCountTag.class file will be created inside your ZipCountTag project folder.

 5 Open the ZipCountTag folder and drag ZipCountTag.class into the Lasso Professional 8\LassoModules folder on the
hard drive.

 6 Stop and then restart Lasso Service.

7 6 3

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 5 – L J a p i i n t r o d u C t i o n

 7 The new tag [Zip_Count] is now part of the Lasso language.

 8 Drag the sample Lasso page called ZipCountTag.lasso and the LJAPITest.zip test file into your Web server root.

 9 In a Web browser, view http://localhost/ZipCountTag.lasso to see the new Lasso tags in action.

To build a sample LJAPI tag module in Mac OS X:

 1 Open a Terminal window.

 2 Change the current folder to the Lasso Professional 8/Documentation folder using the following command:

cd /Applications/Lasso\ Professional\ 7/Documentation/4-ExtendingLasso/LJAPI/Sample\ Code/Substitution\ Tags/
ZipCountTag

 3 Build the sample project using the provided makefile. This requires that you be logged in as the root user.

make

 Alternatively, you can build the module by manually invoking the Java compiler:

javac -classpath ../../../../../../LJAPI.jar ZipCountTag.java

 4 After building, a Java class file named ZipCountTag.class will be created in the current folder. This is the LJAPI
module you’ll install into the LassoModules folder.

 5 Copy the newly-created module to the Lasso modules folder using the following command:

cp ZipCountTag.class /Applications/Lasso\ Professional\ 7/LassoModules

 6 Quit Lasso Service if it’s running, so that the next time it starts up, it will load the new module you just
built (you’ll need to know a root password to use sudo).

cd /Applications/Lasso\ Professional\ 7/Tools/
sudo ./stoplassoservice.command

 7 Start the Lasso Service back up, so it will load the new module.

sudo ./startlassoservice.command

 The new [Zip_Count] tag is now part of the Lasso language.

 8 Copy the sample Lasso page called ZipCountTag.lasso and the LJAPITest.zip test file from your
Lasso Professional 8/Documentation/4-ExtendingLasso/LJAPI/Tags/ZipCountTag
folder into your Web server document root.

 9 Use a Web browser to view http://localhost/ZipCountTag.lasso to see the new Lasso tags in action.

Debugging
You can set breakpoints in your LJAPI class files and perform source-level debugging for your own code. In
order to set this up, add path information to your project so it knows from where to load executables. For
this section, we will use the provided substitution tag project as the example.

To set breakpoints in your LJAPI code:

 1 Lasso Professional 8 allows you to specify Java Virtual Machine options used for launching JVM upon Lasso
startup. These options are stored in the lasso_internal.global_prefs table as java_vm_options in the store_key field.
To enable remote debugging on port 8000, add the following two options to the data column in the
lasso_internal.global_pref table:

-Xdebug -Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=n

 2 After restarting Lasso Professional 8, launch JDB with the following option:

jdb -attach 8000

7 6 4

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 5 – L J a p i i n t r o d u C t i o n

 3 Once attached to the JVM, you can set the breakpoints, single-step through your code, catch exceptions, etc.
Please note that you can store multiple JVM options in the same column. To monitor the GC activity, add
-verbose:gc option, or use -verbose:jni to print JNI messages to the standard output.

 For more information on the options available for your platform and JVM, please consult the JVM vendor
documentation. For a list of non-standard options available for your JVM, review the Xusage.txt file:

 Mac OS X:

/System/Library/Frameworks/JavaVM.framework/Home/lib/Xusage.txt

 Windows:

 <path-to-jvm.dll>/Xusage.txt

7 6 5

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 5 – L J a p i i n t r o d u C t i o n

66
Chapter 66

LJAPI Tags

This chapter includes information about creating tags in Java using the Lasso Java API (LJAPI).

	 •	Substitution Tag Operation discusses how to create new Lasso tags in Java.

	 •	Substitution Tag Tutorial walks through an example project that ships with every installation of Lasso.

Substitution Tag Operation
An LJAPI module is essentially a regular Java class file. When Lasso Professional 8 first starts up, it looks for
module files (Windows DLLs or Mac OS X DYLIBS) in its LassoModules folder. As it encounters and loads an
LJAPI 7 module, it launches the JVM and proceeds to scan the folder for other LJAPI modules. Upon finding a
Java class file, Lasso attempts to determine if it is derived from the com.omnipilot.lassopro.JavaModule class. If it is,
then Lasso loads the class while performing necessary instantiation and calls the registerLassoModule() function
that is implemented in that class:

public void registerLassoModule()

At this point, the module must call the following method as many times as needed, once for each tag
implemented by the module:

void registerTagModule(String moduleName,
 String tagName,
 String methodName,
 int flags,
 String description);

After a tag module is registered with Lasso Professional 8, it can provide information about the name of the
tag and the name of the Java method that is implementing that tag. It also can provide a short description,
and any special flags describing unique features implemented by that tag.

All registered information is later used for dispatching the task of executing a particular tag found in a .lasso
Lasso page to an appropriate LJAPI module, or executing a data source action.

For example, the following code tells Lasso to call the Java class called ZipCountTag whenever the code
[Zip_Count] is encountered inside a .lasso Lasso page. The first parameter of the registerTagModule method is the
module name, the second is the tag name, and the third one is the name of the function implementing the
tag. The last two parameters are the tag type flag and a short description:

public void registerLassoModule()
 {
 registerTagModule("ZipCountTag", "zip_count", "myZipCountFunc",
 FLAG_SUBSTITUTION, "Count items in a zip file");
 }

Below is the code needed in a Lasso page in order to get the custom tag to execute:

7 6 6

L a s s o 8 . 5 L a n g u a g e g u i d e

<html>
 <body>
 Count of items in the LjapiTest.zip file:
 [Zip_Count:'LjapiTest.zip']
 <!-- This should display "2" when page executes -->
 </body>
</html>

This will produce the following:

➜	 2

Substitution Tag Tutorial
The following section provides a walk-through of building an example tag to show how LJAPI features are
used. This code will be most similar to the sample ZipCountTag LJAPI project. In order to build this project,
copy the ZipCountTag project folder and edit the project files inside it.

The module relies on a Java class library to do most of the work, particularly the java.util.zip package which
provides a variety of functions for manipulating the contents of Zip files—standard compressed archives
widely used on the Internet.

The [Zip_Count] tag implemented in the ZipCountTag LJAPI module simply displays the number of files and
directories stored in a Zip file when called from a Lasso page.

Example sample tag Lasso syntax:

[Zip_Count: -Zipfile='LJAPITest.zip', -FilesOnly]

Notice the required convention of placing a dash in front of all named parameters in order to make them
easier to spot in the Lasso code, and prevent ambiguities in the Lasso parser. Notice the tag takes one string
parameter named -Zipfile, and an optional keyword parameter named -FilesOnly. In general, Lasso does not
care about the order in which you pass parameters, so plan to make this tag as flexible as possible by not
assuming anything about the order of parameters. The following variations should work exactly the same.

Example of sample tag with different ordered parameters:

[Zip_Count: -Zipfile='LJAPITest.zip', -FilesOnly]

[Zip_Count: -FilesOnly, -Zipfile='LJAPITest.zip']

Substitution Tag Module Code
Shown below is the code for the substitution tag module. Line numbers are provided to the left of each line
of code, and are referenced in the Substitution Tag Module Walk-Through section.

Note: The line numbers shown refer to the line numbers of the code in the actual file being created, not as
shown in this page . Some single lines of code may carry into two or more lines as shown on this page .

Substitution Tag Module Code

 1 import com.omnipilot.lassopro.*;
 2 import java.io.*;
 3 import java.util.*;
 4 import java.util.zip.*;
 5 public class ZipCountTag extends LassoTagModule
 6 {
 7 public void registerLassoModule()
 8 {
 9 registerTagModule("Zip", "zip_count", "myZipCountFunc",
 10 FLAG_SUBSTITUTION, "Count items in a zip file");

7 6 7

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 6 – L J a p i t a g s

 11 }
 12
 13 public int myZipCountFunc(LassoCall lasso, int action)
 14 {
 15 int err = ERR_NOERR;
 16 try {
 17 IntValue count = new IntValue();
 18 err = lasso.getTagParamCount(count);
 19 if (err == ERR_NOERR && count.intValue() > 0)
 20 {
 21 String zipName = null;
 22 boolean filesOnly = false;
 23 LassoValue param1 = new LassoValue();
 24 LassoValue param2 = new LassoValue();
 25 err = lasso.findTagParam("-zipfile", param1);
 26 if (err != ERR_NOERR || param1.name() == null)
 27 lasso.getTagParam(0, param1);
 28 if (param1.name() == null || param1.name().length() == 0)
 29 return LassoErrors.InvalidParameter;
 30 if (count.intValue() > 1 &&
 31 lasso.getTagParam(1, param2) == ERR_NOERR)
 32 filesOnly = param2.equalsIgnoreCase("-filesonly");
 33 String filePath = lasso.fullyQualifyPath(param1.name());
 34 filePath = lasso.resolvePath(filePath);
 35 filePath = lasso.getPlatformSpecificPath(filePath);
 36 ZipFile zip = new ZipFile(filePath);
 37 Enumeration enum = zip.entries();
 38 ZipEntry entry = null;
 39 int zipcount = 0;
 40 while (enum.hasMoreElements())
 41 {
 42 entry = (ZipEntry)enum.nextElement();
 43 if (!filesOnly || !entry.isDirectory())
 44 ++zipcount;
 45 }
 46 err = lasso.outputTagData(Integer.toString(zipcount));
 47 zip.close();
 48 }
 49 }
 50 catch (java.io.Exception e)
 51 {
 52 lasso.setResultMessage(e.getMessage());
 53 return LassoErrors.FileNotFound;
 54 }
 55 return err;
 56 }
 57 }

Substitution Tag Module Walk-Through
This section provides a step-by-step walk-through for building the substitution tag module.

To write a sample LJAPI tag module:

 1 First, import com.omnipilot.lassopro.* classes as shown in line 1.

 1 import com.omnipilot.lassopro.*;
 2 import java.io.*;
 3 import java.util.*;
 4 import java.util.zip.*;

 2 Define your class to be a subclass of the omnipilot.lasso.LassoSubstitutionTag class.

7 6 8

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 6 – L J a p i t a g s

 5 public class ZipCountTag extends LassoTagModule

 3 Define the registerLassoModule method.

 7 public void registerLassoModule() {

Every Lasso module must implement the registerLassoModule() method. This method will be called by Lasso
at startup, giving your module a chance to register its tags.

 4 Register the tags implemented by your module.

 9 registerTagModule("Zip", "zip_count", "myZipCountFunc",
 10 FLAG_SUBSTITUTION, "Count items in a zip file");

Call this method as many times as there are tags implemented in your module. This method takes five
parameters: the module name, the name of Lasso tag, the name of the Java method implemented by your
module (to be called when the corresponding Lasso tag is found on the page), any additional tag feature
flags, and a brief tag description.

 5 Define the tag formatting method with the same name as indicated in the third parameter of the
corresponding registerTagModule call.

 13 public int myZipCountFunc(LassoCall lasso, int action)

This is the method that does all the work. Every tag registered by your module can have its own formatting
method. Its purpose is to perform an action based on the parameters passed to the tag and/or current
request properties. Most substitution tags would output the data, although some may perform other
actions such as setting page variables, manipulating files, etc.

When Lasso encounters one of the tags registered by your module, it creates new module instance and calls
the corresponding method, passing the LassoCall object which then can be used by the module for calling
back into Lasso.

 6 Define the variable to hold the result code returned by various LassoCall methods.

 15 int err = ERR_NOERR;

 7 Our [Zip_Count] Lasso tag takes one required and one optional parameter. We need to make sure at least one
parameter (filename) is present, otherwise we won’t be able to continue.

 17 IntValue count = new IntValue();
 18 err = lasso.getTagParamCount(count);
 19 if (err == ERR_NOERR && count.intValue() > 0)

 8 Define the storage for the zip file name, optional -FilesOnly parameter, and LassoValue object to be used with
various LassoCall methods.

 21 String zipName = null;
 22 boolean filesOnly = false;
 23 LassoValue param = new LassoValue();

 9 Our tag should be flexible enough to accept both named and unnamed versions of the required parameter.
First, try to search for the parameter by a name.

 25 err = lasso.findTagParam("-zipfile", param1);

 10 If this fails, assume the first unnamed tag parameter to hold the file path name. Call getTagParam() with the
index 0 (tag parameter numbering is zero-based).

 26 if (err != ERR_NOERR || param1.name() == null)
 27 err = lasso.getTagParam(0, param1);

 11 Next, make sure we’ve got a valid value. If the filename parameter contains an empty string, immediately
return from our method, passing InvalidParameter result code back to Lasso.

 28 if (err != ERR_NOERR || param1.name().length() == 0)
 29 return LassoErrors.InvalidParameter;

 12 Our tag also accepts an optional boolean parameter -FilesOnly, indicating that directories must be ignored
while counting zip file items. If more than one parameter was supplied to our tag, try determining if it was
the optional -FilesOnly parameter.

 30 if (count.intValue() > 1 &&
 31 lasso.getTagParam(1, param2) == ERR_NOERR)
 32 filesOnly = param2.equalsIgnoreCase("-filesonly");

7 6 9

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 6 – L J a p i t a g s

 13 The path to the zip file is relative to the server root. In order to find out the actual location of the file, you
can use a number of LassoCall class methods suited for converting a file path name into a fully qualified
platform-specific path. fullyQualifyPath() turns a relative path into a from-the-server-root path. resolvePath()
converts a from-the-root path into a full internal path. Finally, getPlatformSpecificPath() will convert an
internal path name into a platform-specific path name.

 33 String filePath = lasso.fullyQualifyPath(param1.name());
 34 filePath = lasso.resolvePath(filePath);
 35 filePath = lasso.getPlatformSpecificPath(filePath);

 14 Now attempt to instantiate a ZipFile object using a platform-specific path name. Any exceptions thrown by the object constructor
will be caught by the try/catch block wrapping our method's body.

 36 ZipFile zip = new ZipFile(filePath);

 15 Prepare to enumerate items in the zip file.

 37 Enumeration enum = zip.entries();

 16 Define the storage for holding the zip item count.

 38 ZipEntry entry = null;
 39 int zipcount = 0;

 17 Iterate through the zip archive items, incrementing the counter for all items matching our criteria.

 40 while (enum.hasMoreElements())
 41 {
 42 entry = (ZipEntry)enum.nextElement();
 43 if (!filesOnly || !entry.isDirectory())
 44 ++zipcount;
 45 }

 18 Output the resulting zip file item count.

 46 err = lasso.outputTagData(Integer.toString(zipcount));

 19 Close the zip file.

 47 zip.close();

 20 Make sure that any possible exceptions are handled correctly in your code. In this particular case, we simply
pass the message retrieved from the Exception object back to Lasso, and return the FileNotFound error code.
For a complete listing of error codes, see the variables defined in the LassoErrors class.

 50 catch (Exception e)
 51 {
 52 lasso.setResultMessage(e.getMessage());
 53 return LassoErrors.FileNotFound;
 54 }

7 7 0

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 6 – L J a p i t a g s

67
Chapter 67

LJAPI Data Types

This chapter includes information about creating data types in Java using the Lasso Java API (LJAPI).

	 •	Data Type Operation discusses the fundamentals of implementing data types in Java.

	 •	Data Type Tutorial walks through a sample project that is installed with Lasso Professional.

Data Type Operation
Among other new features, Lasso Professional 8 Java API introduces the ability to create custom data types
in Java. Creating a new data type in LJAPI 7 is similar to creating a substitution tag. When Lasso Professional
8 starts up, it scans the LassoModules folder for module files (Windows DLLs or Mac OS X DYLIBS). As it
encounters each module, it executes the registerLassoModule() function for that module. The developer may
register new LJAPI data types implemented by the module inside this function.

Custom data types are analogous to objects used in many other programming languages. They can have
properties (fields) and member tags (methods).

Data Type Tutorial
The following section provides a walk-through of building an example custom type to show how LJAPI
features are used. This code will be most similar to the sample ZipType LJAPI project, so in order to build this
code, copy the ZipType project folder and edit the project files inside it.

The module relies on a Java class library to do most of the work, particularly the java.util.zip package which
provides variety of functions for manipulating the contents of ZIP files—standard compressed archives widely
used on the Internet.

The resulting type will be a “zip” file with the ability to read data from a zip file given a path. The following
member tags will be implemented:

Table 1: Type initializer and Member Tags

Name Description

[Zip:'Pathname'] Type initializer. Creates new instance of a custom type.

[Zip->File] Return the name of this Zip file.

[Zip->Count] Return the count of entries in this file.

[Zip->Size] Synonym for [Zip->Count].

[Zip->Enumerate] Enumerates zip entries, allowing to iterate through stored items via consecutive
calls to [Zip->Next].

[Zip->Next] Advance to the next entry, returning True if more items are available.

[Zip->Position] Current iterator position, i.e. the index.

7 7 1

L a s s o 8 . 5 L a n g u a g e g u i d e

The rest of the member tags are item accessors, operating on the entries stored in a zip file:

Table 2: Accessors

Name Description

[Zip->Name] Returns the name of an indexed entry.

[Zip->Get] Synonym for [Zip->Name].

[Zip->Comment] Zip entry comment.

[Zip->Date] Returns the entry creation date.

[Zip->Crc] Checksum, or 0xffffffff if not available.

[Zip->Method] Compression method: DEFLATED or STORED.

[Zip->Extra] Returns any extra data stored with the entry.

[Zip->GetData] Returns uncompressed entry data.

[Zip->CSize] Returns the size of the compressed data.

[Zip->USize] Returns the size of uncompressed data.

[Zip->IsDir] Returns True if the entry is a directory.

All zip entry accessor tags, except for [Zip->GetData], can take either one or zero parameters. An integer
parameter can specify the index (position) of the entry in a zip file, while a string parameter could be used to
locate an entry by its name. When no parameters are provided, a corresponding action is performed on the
“current” item, whose index can be obtained via the [Zip->Position] member tag.

Example sample tag Lasso syntax:

The following shows an example of using a Zip custom type.

[Var:'zip' = zip:'/archive.zip']
[$zip->Count]
[$zip->Method]
[$zip->CSize]
[$zip->USize]
[While: $zip->Next]
 [$zip->CRC]
[/While]

Custom Data Type Module Code
Shown below is the code for the custom type tag module. Line numbers are provided to the left of each line
of code, and are referenced in the Custom Type Tag Module Walk-Through section.

Note: The line numbers shown refer to the line numbers of the code in the actual file being created, not as
shown in this page . Some single lines of code may carry into two or more lines as shown on this page .

Custom Data Type Module Code

 1 import com.omnipilot.lassopro.*;
 2 import java.util.*;
 3 import java.util.zip.*;
 4 import java.io.*;
 5 import java.text.DateFormat;
 6 public class ZipType extends LassoTagModule
 7 {
 8 static final DateFormat df =
 9 DateFormat.getDateTimeInstance(DateFormat.SHORT, DateFormat.MEDIUM);
 10 static final String[] members = {
 11 "File","Size","Count","Enumerate","Position","Next",
 12 "GetData","Get","Name","Comment","Date","Crc",
 13 "Method", "Extra", "CSize", "USize", "IsDir" };
 14 ZipFile zip = null;

7 7 2

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 7 – L J a p i d a t a t y p e s

 15 Enumeration enum = null;
 16 ZipEntry entry = null;
 17 int index = 0;
 18 public void registerLassoModule()
 19 {
 20 registerTagModule("ZipType", "zip", "format",
 21 FLAG_SUBSTITUTION | FLAG_INITIALIZER, "zip custom type tag");
 22 }
 23 public int format(LassoCall lasso, int action)
 24 {
 25 int err = ERR_NOERR;
 26 LassoValue param = new LassoValue();
 27 String path name = null;
 28 if (lasso.getTagParam(0, param) != ERR_NOERR ||
 29 param.name().length() < 1)
 30 {
 31 lasso.setResultMessage("[Zip] invalid file path name parameter");
 32 return LassoErrors.InvalidParameter;
 33 }
 34 try
 35 {
 36 IntValue count = new IntValue();
 37 err = lasso.getTagParamCount(count);
 38 if (err == ERR_NOERR && count.intValue() > 0)
 39 {
 40 String filePath = lasso.fullyQualifyPath(param.name());
 41 filePath = lasso.resolvePath(filePath);
 42 filePath = lasso.getPlatformSpecificPath(filePath);
 43 this.zip = new ZipFile(filePath);
 44 LassoTypeRef self = new LassoTypeRef();
 45 if ((err = lasso.typeAllocCustom(self, "zip")) != ERR_NOERR)
 46 {
 47 lasso.setResultMessage("[Zip] couldn't create new zip type instance.");
 48 return err;
 49 }
 50 LassoTypeRef ref = new LassoTypeRef();
 51 String className = this.getClass().getName();
 52 for (int i = 0; i < this.members.length; i++)
 53 {
 54 if ((err=lasso.typeAllocTag(ref, className, "memberFunc")) != ERR_NOERR ||
 55 (err=lasso.typeAddMember(self, members[i], ref)) != ERR_NOERR)
 56 {
 57 lasso.setResultMessage("[Zip] error adding member: " + members[i]);
 58 return err;
 59 }
 60 }
 61 if (lasso.typeAllocTag(ref, className, "convertFunc") == ERR_NOERR)
 62 lasso.typeAddMember(self, "onConvert", ref);
 63 if (lasso.typeAllocTag(ref, className, "destroyFunc") == ERR_NOERR)
 64 lasso.typeAddMember(self, "onDestroy", ref);
 65 if ((err = lasso.typeSetCustomJavaObject(self, this)) != ERR_NOERR)
 66 {
 67 lasso.setResultMessage("[Zip] couldn't attach java object to a custom type");
 68 return err;
 69 }
 70 err = lasso.returnTagValue(self);
 71 }
 72 }
 73 catch (Exception e)
 74 {
 75 System.err.println(e.toString());

7 7 3

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 7 – L J a p i d a t a t y p e s

 76 lasso.setResultMessage(e.getMessage());
 77 return LassoErrors.FileNotFound;
 78 }
 79 return err;
 80 }
 81 public int destroyFunc(LassoCall lasso, int action)
 82 {
 83 if (this.zip != null)
 84 {
 85 try { this.zip.close(); }
 86 catch (IOException e) {}
 87 this.zip = null;
 88 }
 89 return ERR_NOERR;
 90 }
 91 public int convertFunc(LassoCall lasso, int action)
 92 {
 93 LassoValue param = new LassoValue();
 94 if (lasso.getTagParam(0, param) == ERR_NOERR &&
 95 param.name().equalsIgnoreCase("string"))
 96 {
 97 lasso.outputTagData("zip:(" + this.zip.getName() + ")");
 98 }
 99
 100 return ERR_NOERR;
 101 }
 102 public int memberFunc(LassoCall lasso, int action)
 103 {
 104 LassoValue tag = new LassoValue();
 105 LassoTypeRef out = new LassoTypeRef();
 106 int err = lasso.getTagName(tag);
 107 if (err != ERR_NOERR || tag.data().length() < 1)
 108 return LassoErrors.InvalidParameter;
 109 if (tag.data().equalsIgnoreCase("file"))
 110 return lasso.outputTagData(zip.getName());
 111 else if (tag.data().equalsIgnoreCase("size") ||
 112 tag.data().equalsIgnoreCase("count"))
 113 {
 114 lasso.typeAllocInteger(out, zip.size());
 115 return lasso.returnTagValue(out);
 116 }
 117 LassoValue param = new LassoValue();
 118 ZipEntry item = this.entry;
 119 if (lasso.getTagParam(0, param) == ERR_NOERR)
 120 {
 121 if (param.type() == LassoValue.TYPE_INT)
 122 {
 123 try {
 124 int idx = Integer.parseInt(param.name());
 125 if (idx < 1 || idx > zip.size())
 126 {
 127 lasso.setResultMessage("[Zip] index out of range: " + idx);
 128 return LassoErrors.InvalidParameter;
 129 }
 130 else if (idx != index)
 131 {
 132 index = idx;
 133 Enumeration enum2 = zip.entries();
 134 while (enum2.hasMoreElements() && idx-- > 0)
 135 item = (ZipEntry)enum2.nextElement();
 136 entry = item;

7 7 4

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 7 – L J a p i d a t a t y p e s

 137 }
 138 } catch (NumberFormatException npe) {}
 139 }
 140 else if (param.type() == LassoValue.TYPE_CHAR)
 141 item = zip.getEntry(param.name());
 142 }
 143 String result = null;
 144 if (tag.data().equalsIgnoreCase("name") ||
 145 tag.data().equalsIgnoreCase("get"))
 146 result = item.getName();
 147 else if (tag.data().equalsIgnoreCase("comment"))
 148 result = item.getComment();
 149 else if (tag.data().equalsIgnoreCase("crc"))
 150 result = Long.toHexString(item.getCrc());
 151 else if (tag.data().equalsIgnoreCase("method"))
 152 result = (item.getMethod() == ZipEntry.DEFLATED ? "DEFLATED" : "STORED");
 153 if (result != null)
 154 return lasso.outputTagData(result);
 155 if (tag.data().equalsIgnoreCase("usize"))
 156 lasso.typeAllocInteger(out, item.getSize());
 157 else if (tag.data().equalsIgnoreCase("csize"))
 158 lasso.typeAllocInteger(out, item.getCompressedSize());
 159 else if (tag.data().equalsIgnoreCase("date"))
 160 lasso.typeAllocString(out, df.format(new Date(item.getTime())));
 161 else if (tag.data().equalsIgnoreCase("isDir"))
 162 lasso.typeAllocBoolean(out, entry.isDirectory());
 163 else if (tag.data().equalsIgnoreCase("position"))
 164 lasso.typeAllocInteger(out, index);
 165 else if (tag.data().equalsIgnoreCase("enumerate"))
 166 {
 167 enum = zip.entries();
 168 index = 0;
 169 }
 170 else if (tag.data().equalsIgnoreCase("getdata"))
 171 {
 172 int max = 0, skip = 0;
 173
 174 if (lasso.findTagParam("-skip", param) == ERR_NOERR)
 175 skip = Integer.parseInt(param.data());
 176 if (lasso.findTagParam("-max", param) == ERR_NOERR)
 177 max = Integer.parseInt(param.data());
 178 int count = 0;
 179 int toRead = 1024;
 180 if (max == 0 || max > item.getSize())
 181 max = (int)item.getSize() - skip;
 182 else if (max < 1024)
 183 toRead = max;
 184 try {
 185 InputStream is = zip.getInputStream(item);
 186 is.skip(skip);
 187 byte b[] = new byte[toRead];
 188 while ((count=is.read(b, 0, toRead)) > -1 && max > 0)
 189 {
 190 max -= count;
 191 if (count > 0)
 192 lasso.outputTagData(new String(b, 0, count));
 193 }
 194 is.close();
 195 } catch (IOException ioe) {}
 196 }
 197 else if (tag.data().equalsIgnoreCase("next"))

7 7 5

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 7 – L J a p i d a t a t y p e s

 198 {
 199 boolean reset = (enum == null);
 200 if (enum != null && !enum.hasMoreElements())
 201 enum = null;
 202 else if (reset)
 203 enum = zip.entries();
 204 boolean hasMore = (enum != null && enum.hasMoreElements());
 205 lasso.typeAllocBoolean(out, hasMore);
 206 if (hasMore)
 207 {
 208 entry = (ZipEntry)enum.nextElement();
 209 if (reset)
 210 index = 1;
 211 else
 212 index++;
 213 }
 214 }
 215 if (!out.isNull())
 216 return lasso.returnTagValue(out);
 217 return err;
 218 }

Custom Data Type Module Walk-Through
This section provides a step-by-step walk-through for building the custom type tag module.

To write a sample LJAPI tag module:

 1 First, import com.omnipilot.lassopro.* classes as shown in line 1.

 1 import com.omnipilot.lassopro.*;
 2 import java.util.*;
 3 import java.util.zip.*;
 4 import java.io.*;
 5 import java.text.DateFormat;

 2 Define the class to be a subclass of the com.omnipilot.lassopro.LassoTagModule class.

 6 public class ZipType extends LassoTagModule

 3 Store the names of member tags implemented by our custom type in a String array variable.

 10 static final String[] members = {
 11 "File","Size","Count","Enumerate","Position","Next",
 12 "GetData","Get","Name","Comment","Date","Crc",
 13 "Method", "Extra", "CSize", "USize", "IsDir" };

 4 Register the custom type initializer method, passing FLAG_INITIALIZER flag in the fourth parameter of
the registerLassoModule method.

 18 public void registerLassoModule()
 19 {
 20 registerTagModule("ZipType", "zip", "format",
 21 FLAG_SUBSTITUTION | FLAG_INITIALIZER, "zip custom type tag");
 22 }

 5 Define main tag formatting method with the same name as specified in the third parameter of previously
called registerTagModule method.

 23 public int format(LassoCall lasso, int action)

 6 Examine parameters passed to our type initializer and create new instance of a java.util.zip.ZipFile object, using
resolved file path name.

 40 String filePath = lasso.fullyQualifyPath(param.name());
 41 filePath = lasso.resolvePath(filePath);
 42 filePath = lasso.getPlatformSpecificPath(filePath);
 43 this.zip = new ZipFile(filePath);

7 7 6

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 7 – L J a p i d a t a t y p e s

 7 Create a new com.omnipilot.lassopro.LassoTypeRef variable to store a reference to the custom type,
which is about to be created in the next step.

 44 LassoTypeRef self = new LassoTypeRef();

 8 Allocate new custom type instance, passing the LassoTypeRef variable and the type name to
LassoCall.typeAllocCustom method.

 45 if ((err = lasso.typeAllocCustom(self, "zip")) != ERR_NOERR)
 46 {
 47 lasso.setResultMessage("[Zip] couldn't create new zip type instance.");
 48 return err;
 49 }

 9 Add member tags to the newly-allocated custom type. In our example, all member tags will be handled by
the same Java method; however, LJAPI allows each member tag to have its own formatting method.

 52 for (int i = 0; i < this.members.length; i++)
 53 {
 54 if ((err=lasso.typeAllocTag(ref, className, "memberFunc")) != ERR_NOERR ||
 55 (err=lasso.typeAddMember(self, members[i], ref)) != ERR_NOERR)
 56 {
 57 lasso.setResultMessage("[Zip] error adding member: " + members[i]);
 58 return err;
 59 }
 60 }

Note that adding the member tags to a custom type is a two-step process. First, an unnamed tag object is
created and placed in a LassoTypeRef variable. In order to be successful, the second and third parameters in
the LassoCall.typeAllocTag method must specify a valid class and method names used by Lasso for locating a
formatting method in a Java class. Member tag methods have the same signature as a type initializer and
regular substitution tag methods, and although not required they are most likely to be implemented in the
same class with the main type initializer method.

Secondly, LassoCall.typeAddMember is used to add a reference to a newly-created tag (third parameter) to a
custom type (first parameter), with the second parameter being a tag name.

 10 Add all necessary callback methods, such as onConvert and onDestroy.

 61 if (lasso.typeAllocTag(ref, className, "convertFunc") == ERR_NOERR)
 62 lasso.typeAddMember(self, "onConvert", ref);
 63 if (lasso.typeAllocTag(ref, className, "destroyFunc") == ERR_NOERR)
 64 lasso.typeAddMember(self, "onDestroy", ref);

Callback methods are being triggered by the events that happen to a custom type in the course of its life.
For example, when a type goes out of scope, its onDestroy tag method is called. When a custom type needs
to be converted to a different data type such as string or integer, its onConvert method is invoked.

Callbacks are added to the custom types in a similar fashion as the other members, with only constraint
being their tag names, which must conform to established convention for naming callback tags. For a full
list of intrinsic member tag names, see the Lasso 7 Language Guide.

 11 Attach this module instance to a custom type.
 65 if ((err = lasso.typeSetCustomJavaObject(self, this)) != ERR_NOERR)
 66 {
 67 lasso.setResultMessage("[Zip] couldn't attach java object to a custom type");
 68 return err;
 69 }

LassoCall.typeSetCustomJavaObject can be used to associate any private data with an instance of a custom
type. Any Java object can be attached to a custom type and later retrieved with a call to a complimentary
LassoCall.typeGetCustomJavaObject method. In the situation were associated object is an instance of
the LassoTagModule subclass, Lasso will also try to invoke formatting methods on this object instead
of creating a new instance (as it does for all substitution tag modules). Aside from producing much
smaller overhead, this allows direct access to all instance (e.g. private) variables from any Java method
implemented in that module.

 12 Finally, return newly-generated custom type tag instance back to Lasso.

7 7 7

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 7 – L J a p i d a t a t y p e s

 70 err = lasso.returnTagValue(self);

 13 Implement formatting methods for onDestroy and onConvert callbacks.

 81 public int destroyFunc(LassoCall lasso, int action)
 82 {
 83 if (zip != null)
 84 {
 85 try { zip.close(); }
 86 catch (IOException e) {}
 87 zip = null;
 88 }
 89 return ERR_NOERR;
 90 }

 14 In the case of onConvert callback, the first parameter passed to our method is the name of the type to which
our custom Zip type should be converted to. If the desired type is a string, return the human-readable
representation of the type, which consists of a type name and a zip file path name.

 91 public int convertFunc(LassoCall lasso, int action)
 92 {
 93 LassoValue param = new LassoValue();
 94 if (lasso.getTagParam(0, param) == ERR_NOERR &&
 95 param.name().equalsIgnoreCase("string"))
 96 {
 97 lasso.outputTagData("zip:(" + this.zip.getName() + ")");
 98 }
 99
 100 return ERR_NOERR;
 101 }

 15 Define our main member tag method memberFunc, that will take care of formatting over a dozen member
tags. If tag name is File, return the full path name to the zip file.

 109 if (tag.data().equalsIgnoreCase("File"))
 110 return lasso.outputTagData(zip.getName());

 16 If the member tag name is Count or Size, return an integer Zip entry count value.

 111 else if (tag.data().equalsIgnoreCase("size") ||
 112 tag.data().equalsIgnoreCase("count"))
 113 {
 114 lasso.typeAllocInteger(out, zip.size());
 115 return lasso.returnTagValue(out);
 116 }

 17 Tags that output plain text can be processed first.

 143 String result = null;
 144 if (tag.data().equalsIgnoreCase("name") ||
 145 tag.data().equalsIgnoreCase("get"))
 146 result = item.getName();
 147 else if (tag.data().equalsIgnoreCase("comment"))
 148 result = item.getComment();
 149 else if (tag.data().equalsIgnoreCase("crc"))
 150 result = Long.toHexString(item.getCrc());
 151 else if (tag.data().equalsIgnoreCase("method"))
 152 result = (item.getMethod() == ZipEntry.DEFLATED ? "DEFLATED" : "STORED");
 153 if (result != null)
 154 return lasso.outputTagData(result);

 18 Tags that return data types, such as integers or booleans, should allocate corresponding values using various
LassoCall.typeAlloc… methods before passing them back to Lasso.

 155 if (tag.data().equalsIgnoreCase("usize"))
 156 lasso.typeAllocInteger(out, item.getSize());
 157 else if (tag.data().equalsIgnoreCase("csize"))
 158 lasso.typeAllocInteger(out, item.getCompressedSize());
 159 else if (tag.data().equalsIgnoreCase("date"))

7 7 8

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 7 – L J a p i d a t a t y p e s

 160 lasso.typeAllocString(out, df.format(new Date(item.getTime())));
 161 else if (tag.data().equalsIgnoreCase("isDir"))
 162 lasso.typeAllocBoolean(out, entry.isDirectory());
 163 else if (tag.data().equalsIgnoreCase("position"))
 164 lasso.typeAllocInteger(out, index);

 19 The Enumerate member restarts a previously used enumeration. Unless it is called in a middle of iterating
through the Zip entries, this tag has the same effect as calling Next for the very first time, or immediately
after advancing past the very last enumerated item in a Zip file.

 165 else if (tag.data().equalsIgnoreCase("enumerate"))
 166 {
 167 enum = zip.entries();
 168 index = 0;
 169 }

 20 The GetData member tag reads uncompressed data from one of the zipped items. This tag accepts two
optional parameters, -Skip and -Max, which are used to specify starting offset and maximum number of
bytes to be read from the Zip archive entry.

 170 else if (tag.data().equalsIgnoreCase("getdata"))
 171 {
 172 int max = 0;
 173 int skip = 0;
 174 if (lasso.findTagParam("-skip", param) == ERR_NOERR)
 175 skip = Integer.parseInt(param.data());
 176 if (lasso.findTagParam("-max", param) == ERR_NOERR)
 177 max = Integer.parseInt(param.data());
 178 int count = 0;
 179 int toRead = 1024;
 180 if (max == 0 || max > item.getSize())
 181 max = (int)item.getSize() - skip;
 182 else if (max < 1024)
 183 toRead = max;
 184 try {
 185 InputStream is = zip.getInputStream(item);
 186 is.skip(skip);
 187 byte b[] = new byte[toRead];
 188 while ((count=is.read(b, 0, toRead)) > -1 && max > 0)
 189 {
 190 max -= count;
 191 if (count > 0)
 192 lasso.outputTagData(new String(b, 0, count));
 193 }
 194 is.close();
 195 } catch (IOException ioe) {}
 196 }

 21 The last member tag Next iterates through Zip archive entries, placing the internally maintained pointer
at the next selected item. This tag provides fast sequential access to items stored in the Zip archive, and
should be used in concert with various accessor tags implemented in this module. When the end of the file
is reached and no more items are available, the tag returns False and restarts the iteration, positioning the
internal pointer immediately before the first Zip item.

 197 else if (tag.data().equalsIgnoreCase("next"))
 198 {
 199 boolean reset = (enum == null);
 200 if (enum != null && !enum.hasMoreElements())
 201 enum = null;
 202 else if (reset)
 203 enum = zip.entries();
 204 boolean hasMore = (enum != null && enum.hasMoreElements());
 205 lasso.typeAllocBoolean(out, hasMore);
 206 if (hasMore)

7 7 9

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 7 – L J a p i d a t a t y p e s

 207 {
 208 entry = (ZipEntry)enum.nextElement();
 209 if (reset)
 210 index = 1;
 211 else
 212 index++;
 213 }
 214 }

 22 Finally, if any of the previous operations produced a valid result, pass the resulting value back to Lasso,
returning an ERR_NOERR error code to flag a successful member tag execution.

 215 if (!out.isNull())
 216 return lasso.returnTagValue(out);
 217 return err;

7 8 0

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 7 – L J a p i d a t a t y p e s

68
Chapter 68

LJAPI Data Sources

This chapter includes information about creating data source connectors in Java using the Lasso Java API
(LJAPI).

	 •	Data Source Connector Operation discusses the theory of creating data source connectors in Java.

	 •	Data Source Connector Tutorial walks through a sample project that ships with every installtion of Lasso
Professional.

Data Source Connector Operation
When Lasso Professional 8 starts up, it looks for module files (Windows DLLs or Mac OS X DYLIBS) in the
LassoModules folder. As Lasso encounters each module, it executes the module’s registerLassoModule() function
once and only once. It is the job of the LJAPI developer to write code to register each new data source (or
custom tag) methods in this registerLassoModule() function. Both substitution tags and data sources may
be registered at the same time, and the code for them can reside in the same module. The only difference
between registering a data source and a substitution tag is whether registerTagModule() or registerDSModule() is
called.

Data sources are typically more complex than substitution tags because Lasso Service calls them with many
different actions during the course of various database operations. Whereas a substitution tag only needs
to know how to format itself, a data source needs to enumerate its tables, search through records, add new
records, delete records, and more. Even so, this added complexity is easily handled with a single switch()
statement, as you will see in the Data Source Connector Tutorial section of this chapter.

Data Source Connectors and Lasso Administration
Once a custom data source connector module is registered by Lasso, it will appear in the Setup > Data
Sources > Connectors section of Lasso Site Administration. If a connector appears here, then it has been
installed correctly.

The administrator adds the data source connection information to the Setup > Data Sources > Hosts
section of Lasso Site Administration, which sets the parameters by which Lasso connects to the data source
via the connector. This information is stored in the Lasso_Internal Lasso MySQL database, where the connector
can retrieve and use the data via function calls.

The data that the administrator can submit in the Setup > Data Sources > Hosts section of Lasso Site
Administration includes the following:

	 •	Name – The administrator-defined name of the data source host.

	 •	Connection URL – The URL string required for Lasso to connect to a data source via the connector. This
typically includes the IP address of the machine hosting the data source.

	 •	Connection Parameters – Additional parameters passed with the Connection URL. This can include the
TCP/IP port number of the data source.

7 8 1

L a s s o 8 . 5 L a n g u a g e g u i d e

	 •	Status – Allows the administrator to enable or disable the connector in Lasso Professional 8.

	 •	Default Username – The data source username required for Lasso to gain access to the data source.

	 •	Default Password – The data source password required for Lasso to gain access to the data source.

The Connection URL, Connection Parameters, Default Username, and Default Password values are passed to the data
source via data source function methods in the com.omnipilot.lassopro.LassoCall class, which are described in the
LJAPI Class Reference section of chapter.

Data Source Connector Tutorial
The following section provides a walk-through of an example data source to show how some of the LJAPI
features are used. This code will be most similar to the sample NNTPDataSource project, which is provided with
Lasso Professional 8 in the following folder.

Lasso Professional 8/Documentation/3 - Lasso Langage Guide/exammples/LJAPI/
DataSourceConnectors/Nntp_ds

The example data source connector bridges a news (NNTP) server and Lasso Professional 8. Network News
Transfer Protocol (NNTP) is used to read and post articles on Usenet news servers. This specific example has
been tested with the Microsoft NNTP Service 5.0, and it provides a good start for any developer desiring to
build a data source connector module supporting a large variety of other NNTP servers.

While an NNTP server is not exactly an RDBMS, there are some advantages to implementing the NNTP
client as a data source connector. The hierarchy of a news storage is somewhat similar to that of a traditional
RDBMS. News articles (rows) are organized in groups (tables), which in turn are parts of distributions
(databases). However, due to a sheer number of news groups available on an average news server (2000-
50000+), treating groups as database tables would put a big load on the internal Lasso security mechanism,
which is required to keep track of permissions for every registered database table. Therefore, the hierarchy has
been adopted to minimize the stress put on Lasso security.

The NNTP connector adds a single News database containing two static tables: Groups and Articles. Performing
a search on the Group table returns a list of groups available on the server. Similarly, executing a query on the
Articles table retrieves a range of articles from a specific newsgroup.

Updating groups or articles is not supported by the NNTP protocol, so only search and insert data source
actions are implemented by this connector. SQL actions are also not supported, although it is possible to
build a simple parser for translating SQL statements into commands understood by NNTP servers.

Data Source Connector Code
Below is the code for the data source module. Line numbers are provided to the left of each line of code, and
are referenced in the Data Source Connector Walk-Through section.

Data Source Connector Code

 1 import com.omnipilot.lassopro.*;
 2 import java.net.*;
 3 import java.io.*;
 4 import java.util.*;
 5 public class NNTP_DS extends LassoDSModule
 6 {
 7 Socket sock;
 8 PrintStream printer;
 9 BufferedReader reader;
 10 String host = null;
 11 int port = 0;
 12 String user = null, pass = null;
 13 String hostInfo = "";
 14 Vector headers = new Vector(10);
 15 int refsIdx = -1;

7 8 2

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 8 – L J a p i d a t a s o u r C e s

 16 int xrefIdx = -1;
 17 int bytesIdx = -1;
 18 boolean useXpat = false;
 19 String groupFilter = "";
 20 String group = "";
 21 String article = "";
 22 int groupCount = -1;
 23 int articleCount = -1;
 24
 25 public void registerLassoModule () {
 26 registerDSModule("NNTP", "dsFunc", 0, "Lasso Connector for NNTP",
 "Simple Usenet client");
 27 }
 28 public int dsFunc (LassoCall lasso, int cmd, LassoValue value) {
 29 int err = ERR_NOERR;
 30 switch (cmd) {
 31 case ACTION_INIT:
 32 err = doInit(lasso);
 33 break;
 34 case ACTION_TERM:
 35 err = doTerm(lasso);
 36 break;
 37 case ACTION_EXISTS:
 38 if (!value.data().equalsIgnoreCase("News"))
 39 err = LassoErrors.WebNoSuchObject;
 40 break;
 41 case ACTION_DB_NAMES:
 42 err = doDBNames(lasso);
 43 break;
 44 case ACTION_TABLE_NAMES:
 45 err = doTableNames(lasso, value.data());
 46 break;
 47 case ACTION_INFO:
 48 err = doInfo(lasso, true);
 49 break;
 50 case ACTION_SEARCH:
 51 err = doSearch(lasso);
 52 break;
 53 }
 54 return err;
 55 }
 56 int doInit(LassoCall lasso) {
 57 return ERR_NOERR;
 58 }
 59 int doTerm(LassoCall lasso) {
 60 close();
 61 return ERR_NOERR;
 62 }
 63 int doDBNames(LassoCall lasso) {
 64 return lasso.addDataSourceResult("News");
 65 }
 66 int doTableNames(LassoCall lasso, String db) {
 67 if (!db.equalsIgnoreCase("News"))
 68 return -1;
 69 lasso.addDataSourceResult("Groups");
 70 lasso.addDataSourceResult("Articles");
 71 return ERR_NOERR;
 72 }
 73 int doInfo(LassoCall lasso, boolean listAllCols) {
 74 int err = ERR_NOERR;
 75 LassoValue tbl = new LassoValue();

7 8 3

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 8 – L J a p i d a t a s o u r C e s

 76 err = lasso.getTableName(tbl);
 77 if (err != ERR_NOERR || tbl.data().length() == 0)
 78 return LassoErrors.InvalidParameter;
 79 if (!connect(lasso))
 80 return LassoErrors.Network;
 81 if (tbl.data().equalsIgnoreCase("Groups")) {
 82 lasso.addColumnInfo("Group", 0,
 LassoValue.TYPE_CHAR, PROTECTION_READ_ONLY);
 83 lasso.addColumnInfo("Last", 0,
 LassoValue.TYPE_INT, PROTECTION_READ_ONLY);
 84 lasso.addColumnInfo("First", 0,
 LassoValue.TYPE_INT, PROTECTION_READ_ONLY);
 85 lasso.addColumnInfo("AllowPost", 0,
 LassoValue.TYPE_CHAR, PROTECTION_READ_ONLY);
 86 } else if (tbl.data().equalsIgnoreCase("Articles")) {
 87 if (!this.headers.isEmpty()) {
 88 String str;
 89 int type, count = headers.size();
 90 lasso.addColumnInfo("Number", 0,
 LassoValue.TYPE_INT, PROTECTION_READ_ONLY);
 91 for (int i = 0; i < count; ++i) {
 92 str = (String)this.headers.elementAt(i);
 93 if (str.equalsIgnoreCase("Lines") ||
 str.equalsIgnoreCase("Bytes"))
 94 type = LassoValue.TYPE_INT;
 95 else if (str.equalsIgnoreCase("Date"))
 96 type = LassoValue.TYPE_DATETIME;
 97 else
 98 type = LassoValue.TYPE_CHAR;
 99 err = lasso.addColumnInfo((String)headers.elementAt(i), 0,
 type, PROTECTION_READ_ONLY);
 100 }
 101 if (listAllCols) {
 102 lasso.addColumnInfo("Headers", 0,
 LassoValue.TYPE_CHAR, PROTECTION_READ_ONLY);
 103 lasso.addColumnInfo("Body", 0,
 LassoValue.TYPE_CHAR, PROTECTION_READ_ONLY);
 104 }
 105 }
 106 }
 107 return err;
 108 }
 109 int doSearch(LassoCall lasso) {
 110 int err = ERR_NOERR;
 111 int skip = 0;
 112 int max = 50;
 113 int totalcount = 0;
 114 String filter = "", reply = "";
 115 LassoValue tbl = new LassoValue();
 116 LassoValue val = new LassoValue();
 117 IntValue ival = new IntValue();
 118 if (lasso.getSkipRows(ival) == ERR_NOERR)
 119 skip = ival.intValue();
 120 if (lasso.getMaxRows(ival) == ERR_NOERR)
 121 max = ival.intValue();
 122 lasso.getTableName(tbl);
 123 lasso.getInputColumnCount(ival);
 124 if (!connect(lasso))
 125 return LassoErrors.Network;
 126 if ((err = doInfo(lasso, max == 1)) != ERR_NOERR)
 127 return err;

7 8 4

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 8 – L J a p i d a t a s o u r C e s

 128 try {
 129 if (tbl.data().equalsIgnoreCase("GROUPS")) {
 130 if (lasso.findInputColumn("group", val) == ERR_NOERR) {
 131 if (val.type() == LassoOperators.OP_ENDS_WITH)
 132 filter = '*' + val.data();
 133 else if (val.type() == LassoOperators.OP_CONTAINS)
 134 filter = '*' + val.data() + '*';
 135 else if (val.type() == LassoOperators.OP_EQUALS)
 136 filter = val.data();
 137 else
 138 filter = val.data() + '*';
 139 }
 140 this.printer.print("LIST ACTIVE " + filter + "\r\n");
 141 reply=reader.readLine();
 142 if (!reply.startsWith("2"))
 143 return setError(lasso, reply);
 144 if (!this.groupFilter.equalsIgnoreCase(filter)) {
 145 this.groupFilter = filter;
 146 this.groupCount = -1;
 147 }
 148 err = addGroups(lasso, skip, max);
 149 } else if (tbl.data().equalsIgnoreCase("ARTICLES")) {
 150 if (lasso.findInputColumn("-group", val) == ERR_NOERR ||
 151 lasso.findInputColumn("group", val) == ERR_NOERR) {
 152 if (val.data().length() > 0) {
 153 if (!val.data().equalsIgnoreCase(this.group))
 154 this.articleCount = -1;
 155 this.group = val.data();
 156 }
 157 }
 158 if (this.group == null || this.group.length() < 1) {
 159 lasso.setResultMessage("Missing group parameter.");
 160 return LassoErrors.InvalidParameter;
 161 }
 162 String id = null;
 163 ival.setInt(0);
 164 if (lasso.getRowID(ival) == ERR_NOERR && ival.intValue() != -1)
 165 id = Integer.toString(ival.intValue());
 166 else if (lasso.getPrimaryKeyColumn(val) == ERR_NOERR &&
 167 (val.name().equalsIgnoreCase("message-id") ||
 168 val.name().equalsIgnoreCase("number")))
 169 filter = val.data();
 170 else if (lasso.findInputColumn("message-id", val) == ERR_NOERR ||
 171 lasso.findInputColumn("number", val) == ERR_NOERR)
 172 filter = val.data();
 173 if (this.articleCount == -1) {
 174 err = selectGroup(lasso);
 175 if (err != ERR_NOERR)
 176 return err;
 177 }
 178 if (max == 1 && (filter == null || filter.length() < 1))
 179 id = getRange(lasso, skip, 1);
 180 if (filter.startsWith("<") || filter.indexOf('-') == -1)
 181 id = filter;
 182 if (id != null && id.length() > 1) { // detail
 183 this.printer.print("ARTICLE " + id + "\r\n");
 184 reply=reader.readLine();
 185 if (!reply.startsWith("2"))
 186 return setError(lasso, reply);
 187 int idx=0, i=0, bytes=0;
 188 String str;

7 8 5

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 8 – L J a p i d a t a s o u r C e s

 189 String[] data = new String[headers.size()+3];
 190 data[0] = reply.substring(4, reply.indexOf(' ', 4));
 191 data[data.length-1] = ""; // body
 192 data[data.length-2] = ""; // headers
 193 while(!(reply=reader.readLine()).startsWith(".")) {
 194 bytes += reply.length() + 2;
 195 i = reply.indexOf(": ");
 196 if (i != -1) { // header
 197 str = reply.substring(0,i);
 198 idx = this.headers.indexOf(str);
 199 if (idx != -1) // known header
 200 data[idx+1] = reply.substring(i+2);
 201 else
 202 data[data.length-2] += reply + '\r';
 203 } else { // body
 204 StringBuffer buf = new StringBuffer();
 205 while (!(reply=reader.readLine()).startsWith(".")) {
 206 bytes += reply.length() + 2;
 207 buf.append(reply).append('\r');
 208 }
 209 data[data.length-1] = buf.toString();
 210 data[this.bytesIdx] = Integer.toString(bytes + 2);
 211 break;
 212 }
 213 }
 214 if (data[0].equals("0") && this.refsIdx != -1) {
 215 idx = data[this.xrefIdx].lastIndexOf(group);
 216 if (idx != -1) {
 217 str = data[this.xrefIdx].substring(idx + group.length() + 1);
 218 if ((idx=str.indexOf(' ')) != -1)
 219 str = str.substring(0, idx);
 220 data[0] = str;
 221 }
 222 }
 223 err = lasso.addResultRow(data);
 224 } else { // GET LIST
 225 if (filter == null || filter.length() == 0)
 226 filter = getRange(lasso, skip, max);
 227 this.printer.print("XOVER " + filter + "\r\n");
 228 reply=reader.readLine();
 229 if (!reply.startsWith("2"))
 230 return setError(lasso, reply);
 231 while(err == ERR_NOERR && !(reply=reader.readLine()).startsWith("."))
 232 err = lasso.addResultRow(split(reply, "\t"));
 233 }
 234 lasso.setNumRowsFound(this.articleCount);
 235 }
 236 } catch (Exception e) {
 237 System.err.println(e.toString());
 238 lasso.setResultMessage(e.getMessage());
 239 err = LassoErrors.Network;
 240 try { this.sock.close(); }
 241 catch (Exception e2) {}
 242 this.sock = null;
 243 }
 244 return err;
 245 }
 246 int setError(LassoCall lasso, String reply) {
 247 int err = -1;
 248 try {
 249 err = Integer.parseInt(reply.substring(0, 3));

7 8 6

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 8 – L J a p i d a t a s o u r C e s

 250 lasso.setResultMessage(reply.substring(4));
 251 } catch (Exception e) {};
 252 lasso.setResultCode(err);
 253 return err;
 254 }
 255 String[] split (String str, String ch) {
 256 int i = 0;
 257 int numcols = headers.size() + 1;
 258 String cols[] = new String[numcols];
 259 StringTokenizer tok = new StringTokenizer(str, ch);
 260 int count = tok.countTokens();
 261 while (tok.hasMoreTokens()) {
 262 if (i == this.refsIdx && numcols > count)
 263 cols[i++] = ""; // empty References field
 264 cols[i++] = tok.nextToken();
 265 }
 266 return cols;
 267 }
 268 boolean connect(LassoCall lasso) {
 269 if (getHostInfo(lasso) != ERR_NOERR)
 270 return false;
 271 try
 272 {
 273 String reply;
 274 if (this.sock != null) {
 275 this.printer.print("MODE READER\r\n"); // probe the connnection
 276 reply = reader.readLine();
 277 if (!reply.startsWith("2")) {
 278 this.sock.close();
 279 this.sock = null;
 280 }
 281 }
 282 if (this.sock == null) {
 283 this.sock=new Socket(this.host,this.port);
 284 this.reader=new BufferedReader(new InputStreamReader(this.sock.getInputStream()), 2500);
 285 this.printer=new PrintStream(new BufferedOutputStream(this.sock.getOutputStream(),2500),true);
 286 this.hostInfo = this.reader.readLine();
 287 login();
 288 this.printer.print("MODE READER\r\n");
 289 reader.readLine();
 290 if (this.headers.isEmpty()) {
 291 printer.print("LIST OVERVIEW.FMT\r\n");
 292 reply = reader.readLine();
 293 if (reply.startsWith("2")) {
 294 int idx, i = 1;
 295 while(!(reply=reader.readLine()).startsWith(".")) {
 296 idx = reply.indexOf(':');
 297 if (idx != -1)
 298 reply = reply.substring(0, idx);
 299 this.headers.addElement(reply);
 300 if (reply.equalsIgnoreCase("References"))
 301 this.refsIdx = i;
 302 else if (reply.equalsIgnoreCase("Bytes"))
 303 this.bytesIdx = i;
 304 else if (reply.equalsIgnoreCase("Xref"))
 305 this.xrefIdx = i;
 306 ++i;
 307 }
 308 }
 309 }
 310 }

7 8 7

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 8 – L J a p i d a t a s o u r C e s

 311 } catch (Exception e) {
 312 lasso.setResultMessage(e.getMessage());
 313 this.sock = null;
 314 return false;
 315 }
 316 return true;
 317 }
 318 void close() {
 319 this.host = null;
 320 this.headers.clear();
 321 this.groupCount = this.articleCount = -1;
 322 this.refsIdx = this.xrefIdx = this.bytesIdx = -1;
 323 try
 324 {
 325 this.printer.print("QUIT\r\n");
 326 this.reader.close();
 327 this.printer.close();
 328 this.sock.close();
 329 this.sock = null;
 330 } catch (Exception e) {}
 331 }
 332 boolean login()
 333 {
 334 if (user != null && user.length() > 0) {
 335 try
 336 {
 337 this.printer.print("AUTHINFO USER " + this.user + "\r\n");
 338 this.printer.print("AUTHINFO PASS " + this.pass + "\r\n");
 339 return (reply.startsWith("281"));
 340 } catch (Exception e) {}
 341 }
 342 return false;
 343 }
 344 int getHostInfo(LassoCall lasso) {
 345 int err = ERR_NOERR;
 346 LassoValue hostPort = new LassoValue();
 347 LassoValue userPass = new LassoValue();
 348 err = lasso.getDataHost(hostPort, userPass);
 349 if (err != ERR_NOERR ||
 350 hostPort.name() == null ||
 351 hostPort.name().length() == 0)
 352 return err;
 353 if (!hostPort.name().equalsIgnoreCase(this.host))
 354 close();
 355 this.host = hostPort.name();
 356 this.user = userPass.name();
 357 this.pass = userPass.data();
 358 try {
 359 this.port = Integer.parseInt(hostPort.data());
 360 } catch (Exception e) {}
 361
 362 if (this.port == 0)
 363 this.port = 119; // default NNTP port
 364 return ERR_NOERR;
 365 }
 366 int addGroups(LassoCall lasso, int skip, int max) {
 367 int err = ERR_NOERR;
 368 int count = 0;
 369 boolean getFirst = (max == 1 || this.group == null || this.group.length() < 1);
 370 String reply = "";
 371 try {

7 8 8

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 8 – L J a p i d a t a s o u r C e s

 372 while ((skip-- > 0) && !(reply=reader.readLine()).startsWith("."))
 373 count++;
 374 if (!reply.startsWith(".")) {
 375 String row[];
 376 while (err == ERR_NOERR && !(reply=reader.readLine()).startsWith(".") && (max-- > 0)) {
 377 count++;
 378 row = split(reply, " ");
 379 if (getFirst) {
 380 this.group = row[0];
 381 err = lasso.addResultRow(row);
 382 getFirst = false;
 383 } else
 384 err = lasso.addResultRow(row);
 385 }
 386 if (this.groupCount != -1) {
 387 count = this.groupCount;
 388 this.sock.close();
 389 this.sock = null;
 390 } else if (!reply.startsWith(".")) {
 391 while (!(reader.readLine()).startsWith("."))
 392 count++;
 393 this.groupCount = count;
 394 }
 395 }
 396 } catch (Exception e) { System.err.println(e.toString()); }
 397 err = lasso.setNumRowsFound(count);
 398 return err;
 399 }
 400 int selectGroup(LassoCall lasso) throws java.io.IOException {
 401 this.printer.print("GROUP " + this.group + "\r\n");
 402 String reply=reader.readLine();
 403 if (!reply.startsWith("2"))
 404 return setError(lasso, reply);
 405 else
 406 return ERR_NOERR;
 407 }
 408 String getRange(LassoCall lasso, int skip, int max) {
 409 this.printer.print("LISTGROUP " + this.group + "\r\n");
 410 StringBuffer result = new StringBuffer();
 411 int count = 0;
 412 try {
 413 String reply=reader.readLine();
 414 if (reply.startsWith("2")) {
 415 String last = "";
 416 while (!(reply=reader.readLine()).startsWith(".") && (skip-- > 0))
 417 count++;
 418 if (!reply.startsWith(".")) {
 419 result.append(reply);
 420 if (max != 1)
 421 result.append("-");
 422 while (!(reply=reader.readLine()).startsWith(".") && (--max > 0)) {
 423 count++;
 424 last = reply;
 425 }
 426 if (this.articleCount > -1) {
 427 this.printer.println("QUIT\r\n");
 428 this.sock.close();
 429 this.sock = null;
 430 count = this.articleCount;
 431 if (connect(lasso))
 432 selectGroup(lasso);

7 8 9

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 8 – L J a p i d a t a s o u r C e s

 433 } else if (!reply.startsWith(".")) {
 434 while (!(reader.readLine()).startsWith("."))
 435 count++;
 436 result.append(last);
 437 this.articleCount = count;
 438 }
 439 }
 440 }
 441 } catch (Exception e) {} ;
 442 return result.toString();
 443 }
 444 }

Data Source Connector Walk-Through
This section provides a step-by-step walk-through for building the described data source connector.

To build a sample LJAPI Data Source Connector:

 1 First, import com.omnipilot.lassopro.* classes as shown in line 1.

 1 import com.omnipilot.lassopro.*;
 2 import java.net.*;
 3 import java.io.*;
 4 import java.util.*;

 2 Define your module to be a subclass of the com.omnipilot.lassopro.LassoDSModule class:

 6 public class NNTP_DS extends LassoDSModule {

Define the storage for global variables, which are objects used to communicate with an NNTP server,
authentication and server info, etc.

 7 Socket sock;
 8 PrintStream printer;
 9 BufferedReader reader;
 …

 3 Define the registerLassoModule method.

 17 public void registerLassoModule() {

Every Lasso module must implement the registerLassoModule() method. This method will be called by Lasso
at startup, giving your module a chance to register its data source(s).

 4 Define your main data source method. This function gets called with various actions as Lasso Professional
requests information from the data source. The method name should be identical to the string passed in
the second parameter of the registerLassoModule() method.

 28 public int dsFunc (LassoCall lasso, int cmd, LassoValue value)

 5 Dispatch the action to corresponding Java method implemented in the module. The switch statement
distinguishes between various actions. For a complete list of action constant values, see the LassoDSModule
class reference.

 30 switch (cmd) {
 31 case ACTION_INIT:
 32 err = doInit(lasso);
 33 break;
 34 case ACTION_TERM:
 35 err = doTerm(lasso);
 break;

 6 Among various actions that can be performed by a data source module the, ACTION_EXISTS command is
sent by Lasso Professional to verify that a particular database exists on a specific host. If the name of the
database being looked up is not known, the module must return a LassoErrors.WebNoSuchObject error:

 37 case ACTION_EXISTS:
 38 if (!value.data().equalsIgnoreCase("News"))
 39 err = LassoErrors.WebNoSuchObject;

7 9 0

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 8 – L J a p i d a t a s o u r C e s

 40 break;

 7 Return the ERR_NOERR result code upon successful completion of the task. Returning a non-zero value will cause the Lasso
Professional engine to report a fatal error and stop processing the page.

 54 return err;

 8 After successful registration, every data source module receives the ACTION_INIT command, which gives it
a chance to establish connection with a data source or perform any other initialization tasks. Our module
simply returns ERR_NOERR result code:

 56 int doInit(LassoCall lasso) {
 57 return ERR_NOERR;
 58 }

 9 Similarly, Lasso sends the ACTION_TERM command to all registered data source modules during its
shutdown sequence. The sample data source uses this as a signal to close the connection to a NNTP server
and perform additional clean-up tasks:

 59 int doTerm(LassoCall lasso) {
 60 close();
 61 return ERR_NOERR;
 62 }

 10 The ACTION_DB_NAMES command is sent whenever Lasso Professional needs to get a list of databases
which the data source provides access to. The developer must write code that discovers all the databases the
module knows of, and call LassoCall.addDataSourceResult() once for each database it encounters:

 65 int doDBNames(LassoCall lasso) {
 66 return lasso.addDataSourceResult("News");
 67 }

 11 Whenever a data source module receives the ACTION_TABLE_NAMES command, it must examine the
database name passed in the LassoValue parameter, and return the names of all tables available in the
specified database:

 68 int doTableNames(LassoCall lasso, String db) {
 69 if (!db.equalsIgnoreCase("News"))
 70 return -1;
 71 lasso.addDataSourceResult("Groups");
 72 lasso.addDataSourceResult("Articles");
 73 return ERR_NOERR;
 74 }

 12 Lasso Professional sends the ACTION_INFO command when it needs to retrieve the information about
columns contained in the result set. Inline tag actions like -FindAll and -Search usually return a result set
containing certain number of rows/records, each consisting of one or more columns/fields. When data
source module receives an ACTION_INFO command, it must call LassoCall.addColumnInfo() method once for
each column stored in the result set.

 73 int doInfo(LassoCall lasso, boolean listAllCols) {
 74 int err = ERR_NOERR;
 75 LassoValue tbl = new LassoValue();
 76 err = lasso.getTableName(tbl);
 77 if (err != ERR_NOERR || tbl.data().length() == 0)
 78 return LassoErrors.InvalidParameter;
 79 if (!connect(lasso))
 80 return LassoErrors.Network;
 81 if (tbl.data().equalsIgnoreCase("Groups")) {
 82 lasso.addColumnInfo("Group", 0,
 LassoValue.TYPE_CHAR, PROTECTION_READ_ONLY);
 83 lasso.addColumnInfo("Last", 0,
 LassoValue.TYPE_INT, PROTECTION_READ_ONLY);
 84 lasso.addColumnInfo("First", 0,
 LassoValue.TYPE_INT, PROTECTION_READ_ONLY);
 85 lasso.addColumnInfo("AllowPost", 0,
 LassoValue.TYPE_CHAR, PROTECTION_READ_ONLY);
 86 } …

7 9 1

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 8 – L J a p i d a t a s o u r C e s

 13 The ACTION_SEARCH command is sent whenever Lasso Professional needs to perform the search action on a
data source.

 109 int doSearch(LassoCall lasso) {

 14 All of the information about the current search parameters (database and table names, search arguments,
sort arguments, etc.) can be retrieved by calling various LJAPI methods such as LassoCall.getDataSourceName()
and LassoCall.getTableName(). Similarly, one can call getSkipRows() and getMaxRows() methods to retrieve the
-SkipRecords and -MaxRecords inline parameter values. For a complete list of available methods, see LassoCall
class reference.

 117 IntValue ival = new IntValue();
 118 if (lasso.getSkipRows(ival) == ERR_NOERR)
 119 skip = ival.intValue();
 120 if (lasso.getMaxRows(ival) == ERR_NOERR)
 121 max = ival.intValue();
 122 lasso.getTableName(tbl);
 123 lasso.getInputColumnCount(ival);

 15 The module needs to perform different actions depending on the search table name.

 129 if (tbl.data().equalsIgnoreCase("GROUPS")) {

 16 Some NNTP servers allow retrieval of newsgroup listings filtered by a matching pattern. The module builds
the pattern string based on the value of the inline search operator (beginsWith, endsWith, etc.).

 130 if (lasso.findInputColumn("group", val) == ERR_NOERR) {
 131 if (val.type() == LassoOperators.OP_ENDS_WITH)
 132 filter = '*' + val.data();
 133 else if (val.type() == LassoOperators.OP_CONTAINS)
 134 filter = '*' + val.data() + '*';
 135 else if (val.type() == LassoOperators.OP_EQUALS)
 136 filter = val.data();
 137 else
 138 filter = val.data() + '*';
 139 }

 17 In case the search is being performed on the ARTICLES table, we need to find out the name of a newsgroup
before we can proceed any further.

 149 } else if (tbl.data().equalsIgnoreCase("ARTICLES")) {
 150 if (lasso.findInputColumn("-group", val) == ERR_NOERR ||
 151 lasso.findInputColumn("group", val) == ERR_NOERR) {

 18 Next, we check if an article number or message ID has been included in the search criteria, either as a
primary keyfield, record ID, or as a named search field.

 164 if (lasso.getRowID(ival) == ERR_NOERR && ival.intValue() != -1)
 165 id = Integer.toString(ival.intValue());
 166 else if (lasso.getPrimaryKeyColumn(val) == ERR_NOERR &&
 167 (val.name().equalsIgnoreCase("message-id") ||
 168 val.name().equalsIgnoreCase("number")))
 169 filter = val.data();
 170 else if (lasso.findInputColumn("message-id", val) == ERR_NOERR ||
 171 lasso.findInputColumn("number", val) == ERR_NOERR)
 172 filter = val.data();

 19 If none of the above was found, yet the -MaxRecords inline parameter appears to limit the query results to a
single row, we can try finding the desired article ID based on the current -SkipRecords value.

 178 if (max == 1 && (filter == null || filter.length() < 1))
 179 id = getRange(lasso, skip, 1);

 20 If the article has been identified, proceed with retrieving the message in its entirety.

 182 if (id != null && id.length() > 1) { // detail
 183 this.printer.print("ARTICLE " + id + "\r\n");
 184 reply=reader.readLine();

 21 Otherwise, select the next group of news articles and retrieve their headers.

 225 if (filter == null || filter.length() == 0)

7 9 2

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 8 – L J a p i d a t a s o u r C e s

 226 filter = getRange(lasso, skip, max);
 227 this.printer.print("XOVER " + filter + "\r\n");
 228 reply=reader.readLine();
 229 if (!reply.startsWith("2"))
 230 return setError(lasso, reply);

 22 The LassoCall.addResultRow() method is used to return the results of a data source action. It should be called
as many times as there are records in the result set, once for each record.

LassoCall.addResultRow() method takes a single String array parameter. Each array element corresponds to a
record column/field contained in the result set. The total number of array elements must be equal to the
number of times LassoCall.addColumnInfo() method was called for this data source action. Since news article
headers are transmitted in the form of a tab-delimited string, we use our custom split() method to convert
the data to a String array, suitable for passing to addResultRow() method:

 231 while(err == ERR_NOERR && !(reply=reader.readLine()).startsWith("."))
 232 err = lasso.addResultRow(split(reply, "\t"));

 23 Finally, implement a number of convenience methods, including the setError() routine used for standard
error handling:

 246 int setError(LassoCall lasso, String reply) {
 247 int err = -1;
 248 try {
 249 err = Integer.parseInt(reply.substring(0, 3));
 250 lasso.setResultMessage(reply.substring(4));
 251 } catch (Exception e) {};
 252 lasso.setResultCode(err);
 253 return err;
 254 }

7 9 3

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 8 – L J a p i d a t a s o u r C e s

69
Chapter 69

LJAPI Reference

This chapter provides a reference to all of the types and function in the Lasso Java API (LJAPI).

	 •	LJAPI Interface Reference introduces the interfaces that are provided with LJAPI.

	 •	LJAPI Class Reference documents every class this is provided with LJAPI.

LJAPI Interface Reference
This section provides a listing of all Java interfaces available for use in LJAPI 7. All variables, constructors, and
methods for each interface are organized by category under each interface name.

com.omnipilot.lassopro.LassoJavaModule
This is the base interface implemented by both substitution tag and data source LJAPI modules. Upon Lasso
Service startup, the registerLassoModule method is called for every Java module located inside the LassoModules
folder. Each module returns information about their name, implemented tags or data sources, method
names, etc.

Data source modules are instantiated only once and then used repeatedly to perform various data source
actions. Tag modules are instantiated every time Lasso resolves a tag implemented by a LassoTagModule.

Methods

registerLassoModule()

This method must be defined in all LJAPI modules. Lasso calls this once at startup to allow a module to
register its tags or data sources.

public void registerLassoModule ();

Variables

ERR_NOERR

On success, every method must return ERR_NOERR result code.

public static final int ERR_NOERR

LJAPI Class Reference
This section lists all the Java classes available for use in LJAPI 7. All variables, constructors, and methods for
each interface are organized alphabetically under each interface name, unless specified otherwise.

7 9 4

L a s s o 8 . 5 L a n g u a g e g u i d e

com.omnipilot.lassopro.FloatValue
Wrapper class for a primitive float or double type. Used for returning decimal values from the
LassoCall.typeGetDecimal method.

Constructors

public FloatValue()
public FloatValue(float value)
public FloatValue(double value)

Methods

doubleValue()

Returns the value of a FloatValue object as a double.

public double doubleValue()

floatValue()

Returns the value of a FloatValue object as a float.

public float floatValue()

toString()

Converts an object to a string. Overrides toString() method in class Object.

public String toString()

com.omnipilot.lassopro.IntValue
Wrapper for primitive integer types. Used for returning values from LassoCall methods, which in C would
require passing the pointer-type parameters: int*, long* and LP_TypeDesc*. In addition, this class provides
methods for converting a 4-byte int (LP_TypeDesc type in LCAPI) to a String and back.

Constructors

public IntValue()
public IntValue(int value)
public IntValue(long value)

Methods

byteValue()

Returns the value of an IntValue object as a 1-byte integer.

public byte byteValue()

shortValue()

Returns the value of an IntValue object as a 2-byte integer.

public short shortValue()

intValue()

Returns the value of an IntValue object as a 4-byte integer.

public int intValue()

longValue()

Returns the value of an IntValue object as an 8-byte integer.

public long longValue()

7 9 5

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

setByte()

Sets the value of an IntValue object to a 1-byte integer.

public void setByte(byte value)

setShort()

Sets the value of an IntValue object to a 2-byte integer.

public void setShort(short value)

setInt()

Sets the value of an IntValue object to a 4-byte integer.

public void setInt(int value)

setLong()

Sets the value of an IntValue object to an 8-byte integer.

public void setLong(long value)

toDescType()

Converts the lower 4 bytes of an IntValue value to a 4-char String.

public String toDescType()

toString()

Converts an object to a string. Overrides toString() method in class Object.

public String toString()

IntToFourCharString()

Static method used for converting an int to a 4-char String.

public static String IntToFourCharString(int value)

com.omnipilot.lassopro.LassoCall
Of all Java classes listed in this section, the LassoCall class is of the utmost importance. All the interaction
between an LJAPI module and Lasso Professional 8 is achieved by means of invoking various methods
implemented in the LassoCall class. These functions can be used to do any of the following: register your tags
or data sources, allocate memory, return error messages, get tag or parameter information, get client/server
environment information, output text, read/set MIME headers, access Lasso variables, interpret/execute
arbitrary Lasso tags, store persistent data, check if the user is an administrator, perform data source functions,
and safely access multiuser/multithreaded resources.

All class methods in this section are listed by their category.

Internal Value Methods

getLassoParam()

Fetches an internal server value such as path to LassoModules folder, name of the Lasso error log file, etc. For a
full list of available parameters, please see the listing of constants defined in the LassoParams class.

public int getRequestParam(int key, LassoValue outResult);

getRequestParam()

Fetches an HTTP request value such as server port, cookies, root path, username, etc. For a full list of available
parameters, please see the listing of constants defined in the LassoRequestParams class. Please note that some
of these parameters may not be available on all HTTP servers.

public int getRequestParam(int key, LassoValue outResult);

7 9 6

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

Error Messages and Result Code Methods

setResultCode()

Sets the result code that can be displayed if the Lasso programmer inserts [Error_CurrentError: -ErrorCode] into the
Lasso page after executing a custom LJAPI tag.

public int setResultCode(int err);

setResultMessage()

Sets the error message that can be displayed if the Lasso programmer inserts [Error_CurrentError: -ErrorMessage]
into the Lasso page after executing a custom LJAPI tag.

public int setResultMessage(String msg);

Tag and Parameter Info Methods

getTagName()

Fetches the name of the tag that triggered this call (e.g. in the case of [my_tag: …] the resulting value would be
my_tag). This makes it possible to design a single tag function which can perform the duties of many different
Lasso tags, perhaps ones that all have similar functionality but different names.

public int getTagName(LassoValue result);

getTagParamCount()

Fetches the number of parameters that were passed to the tag. For instance, [my_tag: 'hello', -option=1, -hilite=false]
will report that three parameters were passed (unnamed parameters are treated just like any other parameter).

public int getTagParamCount(IntValue result);

getTagParam()

Gets the name and value of a parameter given its index. Parameters are numbered left-to-right, starting at
index 0: [my_tag: -param0='value0', -param1='value1', -param2=2].

public int getTagParam(int paramIndex, LassoValue result);

getTagParam2()

Get the parameter using the parameter index. This function differs from getTagParam() in that it preserves
the actual type of the parameter instead of automatically converting it to a string. Keyword/value pairs are
returned as a LASSO_PAIR type.

public int getTagParam2(int paramIndex, LassoTypeRef outValue);

tagParamIsDefined()

Returns ERR_NOERR if the parameter was defined. Otherwise, the parameter wasn’t defined.

public int tagParamIsDefined(String paramName);

findTagParam()

Finds and fetches a tag parameter by name. A return value of ERR_NOERR means the parameter was found
successfully.

public int findTagParam(String paramName, LassoValue result);

findTagParam2()

Finds and returns a tag parameter by name while preserving the original type. A returned value of ERR_NOERR
means the parameter was successfully found.

public int findTagParam2(String paramName, LassoTypeRef outValue);

getTagEncoding()

Fetches the encoding method indicated for this tag. This is rarely used, because Lasso handles encoding and
decoding for you.

public int getTagEncoding(IntValue method);

7 9 7

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

childrenRun()

Used to execute the contents of a container tag. Tags become containers when the FLAG_CONTAINER flag is
used. The result parameter will contain the combined result data for all tags contained.

public int childrenRun(LassoTypeRef outValue);

runRequest()

Creates and runs a new LJAPI call on the given method (methodName of the className class). If there is already
an active request on the current thread, the method will be run within the context of that thread. If there is
no active request on the current thread, a new request will be created and run based on the global context.
The tagAction parameter is passed to the methodName and can be used to signal or pass information to the
function.

public static int runRequest(String className,
String methodName,
 int tagAction,
 int unused);

Output Methods

outputTagData()

Outputs any string data to the page. Lasso takes care of encoding, and this can be called as many times as
needed. The second variant of this method is recommended for writing binary data.

public int outputTagData(String data);

public int outputTagData(byte[] data);

returnTagValue()

Specifies the return value for the tag. Note that only a single returnTagValue or outputTagData can be used from
within a tag. returnTagValue is the prefered method for returning tag data as it allows data of any type to be
returned (including binary data), while outputTagData is restricted to printable text data.

public int returnTagValue (LassoTypeRef value);

Data Type Methods

typeAlloc()

This function will allocate a new type instance. The type is specified by the typeName parameter. An array of
parameters can be passed to the type initializer. Types created through this function will be automatically
destroyed after the LJAPI call has returned. In order to prevent this, typeDetach should be used.

 public int typeAlloc (String typeName,
 LassoTypeRef[] params,
 LassoTypeRef outType);

typeFree()

Attempts to free a type created using typeAlloc or any other method. The LassoCall variable may be null if the
provided type has been detached using typeDetach.

public int typeFree (LassoTypeRef inType);

typeDetach()

Prevents the type from being destroyed once the LJAPI call returns. Types that have been detached must
eventually be destroyed using typeFree() (passing null in the LassoCall variable) or a memory leak will occur.

public int typeDetach(LassoTypeRef toDetach);

typeAllocNull()

This method allows new instances of LASSO_NULL data types to be allocated. Types allocated in this manner
will be destroyed once the LJAPI call is returned.

7 9 8

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

public int typeAllocNull (LassoTypeRef outNull);

typeAllocString()

This method allows new instances of string data types to be allocated. Types allocated in this manner will be
destroyed once the LJAPI call is returned.

public int typeAllocString (LassoTypeRef outString, String value);

typeAllocInteger()

This method allows new instances of integer data types to be allocated (Lasso integers are 8-byte signed
INTs). Types allocated in this manner will be destroyed once the LJAPI call is returned.

public int typeAllocInteger (LassoTypeRef outInteger, long value);

typeAllocDecimal()

This method allows new instances of decimal data types to be allocated. Types allocated in this manner will
be destroyed once the LJAPI call is returned.

public int typeAllocDecimal (LassoTypeRef outDecimal, double value);

typeAllocPair()

This method allows new instances of pair data types to be allocated. Types allocated in this manner will be
destroyed once the LJAPI call is returned.

public int typeAllocPair (LassoTypeRef outPair,
 LassoTypeRef inFirst,
 LassoTypeRef inSecond);

typeAllocReference()

This method allows new instances of reference data types to be allocated. Types allocated in this manner will
be destroyed once the LCAPI call is returned.

public int typeAllocReference (LassoTypeRef outRef,
 LassoTypeRef referenced);

typeAllocTag()

This method allows new instances of tag data types to be allocated. Types allocated in this manner will
be destroyed once the LJAPI call is returned. Method methodName should have the same signature as
TAG_METHOD_PROTOTYPE() method in the LassoTagModule class.

public int typeAllocTag (LassoTypeRef outTag,
 String className,
 String methodName);

typeAllocArray()

This method allows new instances of array data types to be allocated. Types allocated in this manner will be
destroyed once the LJAPI call is returned.

public int typeAllocArray (LassoTypeRef outArray,
 LassoTypeRef[] inElements);

typeAllocMap()

This method allows new instances of map data types to be allocated. Types allocated in this manner will be
destroyed once the LJAPI call is returned.

Two versions of the same method are provided: in the first case the count of elements of the inElements array
must be divisible by 2 and contain both keys and values (odd = key, even = value). In the second case, map
keys and values must be passed in a separate parameters.

public int typeAllocMap (LassoTypeRef outMap,
 LassoTypeRef[] inElements);
public int typeAllocMap (LassoTypeRef outMap,
 LassoTypeRef[] inKeys,
 LassoTypeRef[] inValues);

7 9 9

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

typeAllocBoolean()

This method allows new instances of boolean data types to be allocated. Types allocated in this manner will
be destroyed once the LJAPI call is returned.

public int typeAllocBoolean(LassoTypeRef outBool, boolean inValue);

typeGetBytes()

This method returns the data of a type instance as an array of bytes.

public bytes[] typeGetString(LassoTypeRef type);

typeGetString()

This method gets the data from a previously created string instance. When setting a value, the type is
converted if required.

public int typeGetString(LassoTypeRef type, LassoValue outValue);

typeGetInteger()

This method gets the data from a previously created integer instance. When setting a value, the type is
converted if required.

public int typeGetInteger(LassoTypeRef type, IntValue outValue);

typeGetDecimal()

This method gets the data from a previously created decimal instance. When setting a value, the type is
converted if required.

public int typeGetDecimal(LassoTypeRef type, FloatValue outValue);

typeGetBoolean()

This method gets the data from a previously created boolean instance. When setting a value, the type is
converted if required.

public int typeGetBoolean(LassoTypeRef type, BoolValue outValue);

typeSetBytes()

This method sets the data of a type instance. The type is converted if required.

public int typeSetBytes(LassoTypeRef type, byte[] value);

typeSetString()

This method sets the value of a previously created string type instance.

public int typeSetString(LassoTypeRef type, String value);

typeSetInteger()

This method sets the value of a previously created integer instance.

public int typeSetInteger(LassoTypeRef type, long value);

typeSetDecimal()

This method sets the value of a previously created decimal instance.

public int typeSetDecimal(LassoTypeRef type, double value);

typeSetBoolean()

This method sets the value of a previously created boolean instance.

public int typeSetBoolean(LassoTypeRef type, boolean value);

arrayGetSize()

This method gets the size of a previously created array instance.

public int arrayGetSize(LassoTypeRef array, IntValue outLen);

8 0 0

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

arrayGetElement()

This method gets an array element from a previously created array instance.

public int arrayGetElement(LassoTypeRef array,
 int index,
 LassoTypeRef outElement);

arraySetElement()

This method sets an array element in a previously created array instance.

public int arraySetElement(LassoTypeRef array,
 int index,
 LassoTypeRef element);

arrayRemoveElement()

This method removes an element from a previously created array instance.

public int arrayRemoveElement(LassoTypeRef array, int index);

mapGetSize()

This method gets the size of a previously created map instance.

public int mapGetSize(LassoTypeRef map, IntValue outLen);

mapFindElement()

This method finds an element in a previously created map instance stored under unique key.

public int mapFindElement(LassoTypeRef map,
 LassoTypeRef key,
 LassoTypeRef outElement);

mapGetElement()

This method gets an element from a previously created map instance using the element index.

public int mapGetElement(LassoTypeRef map,
 int index,
 LassoTypeRef outPair);

mapSetElement()

This function sets an element in a previously created map instance. If no elements were previously stored
under the specified key, the element will be added to the map, otherwise the old element will be replaced by
a new value.

 public int mapSetElement(LassoTypeRef map,
 LassoTypeRef key,
 LassoTypeRef value);

mapRemoveElement()

This method removes an element from a previously created map instance.

public int mapRemoveElement(LassoTypeRef map, LassoTypeRef key);

pairGetFirst()

This method gets the first element from a previously created pair instance.

public int pairGetFirst(LassoTypeRef pair, LassoTypeRef outValue);

pairGetSecond()

This method gets the second element from a previously created pair instance.

public int pairGetSecond(LassoTypeRef pair, LassoTypeRef outValue);

pairSetFirst()

This method sets the first element in a previously created pair instance.

8 0 1

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

public int pairSetFirst(LassoTypeRef pair, LassoTypeRef first);

pairSetSecond()

This function sets the second element in a previously created pair instance.

public int pairSetSecond(LassoTypeRef pair, LassoTypeRef second);

typeGetMember()

This function is used to retrieve a member from a type instance. Members are searched by name with tag
members searched first. Data members are searched if no tag member is found with the given name.

public int typeGetMember(LassoTypeRef fromType,
 String named,
 LassoTypeRef outMember);

typeGetProperties()

This method has two uses. If the targetType parameter is not null, it is used to get all data and tag members
from a given type. They are returned as a pair of arrays in the outPair value. The first element of each pair is the
map of data members for the type. The second element is the map of tag members. Each element in the array
represents the members of each type inherited by the targetType.

If the targetType parameter is null, typeGetProperties will return an array containing the variable maps for the
currently active request.

public int typeGetProperties (LassoTypeRef targetType,
 LassoTypeRef outPair);

typeGetName()

Retrieves the name of the target type.

public int typeGetName(LassoTypeRef target, LassoValue outName);

typeRunTag()

Used to to execute a given tag. The tag can be run given a specific name and parameters, and the return value
of the tag can be accessed. If the tag is a member tag, the instance of which it is a member can be passed
using the final parameter. The params, returnValue, and optionalTarget parameters may all be null.

A slightly modified version of the same method is provided for convenience puproses. It accepts a single
LassoTypeRef parameter instead of a LassoTypeRef array.

public int typeRunTag (LassoTypeRef tagType,
 String named,
 LassoTypeRef[] params,
 LassoTypeRef returnValue,
 LassoTypeRef optionalTarget);

public int typeRunTag (LassoTypeRef tagType,
 String named,
 LassoTypeRef parameter,
 LassoTypeRef returnValue,
 LassoTypeRef optionalTarget);

typeAssign()

This performs an assignment of one type to another. The result will be the same as if the following had been
executed in Lasso:#left_hand_side = #right_hand_side

public int typeAssign(LassoTypeRef left_hand_side,
 LassoTypeRef right_hand_side);

typeStealValue()

This function transfers the data from one type to another type. Both types must be valid and pre-allocated.
After the call, victim will still be valid, but will be of type null.

8 0 2

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

public int typeStealValue(LassoTypeRef thief, LassoTypeRef victim);

handleExternalConversion()

Converts a Lasso type into single-byte or binary data using the specific encoding name. The default for all
database, column, table names should be “iso8859-1”.

public byte[] handleExternalConversion(LassoTypeRef inInstance, String inEncoding);

handleInternalConversion()

Converts a single-byte or binary representation of a Lasso type back into an instance of that type.

public int handleInternalConversion(byte[] inData, String inEncoding, int inClosestLassoType, LassoTypeRef outType);

typeInheritFrom

This function changes the inheritance structure of a type. Sets inNewParent to be the new parent of the child.
Any parent that child currently has will be destroyed.

public int typeInheritFrom(LassoTypeRef inChild, LassoTypeRef inNewParent);

Custom Type Methods

typeAllocCustom()

This function is used within module methods that were registered as being a type initializer
(FLAG_INITIALIZER). It initializes a blank custom type and sets the type’s __type_name__ member to the
provided value. The new type does not yet have a lineage and has no members added to it besides
__type_name__. New data or tag members should be added using typeAddMember. The new custom type should
be the return value of the type initializer. Any inherited members will be added to the type after the LJAPI call
returns.

Warning: Do not call this unless you are in a type initializer . If you are not in a type initializer, the result will be a
type that will never be fully initialized .

public int typeAllocCustom(LassoTypeRef outCustom, String name);

typeAddMember()

This is used to add new members to type instances. The member can be any sort of type including tags or
other custom types.

public int typeAddMember(LassoTypeRef to,
 String named,
 LassoTypeRef member);

typeAllocFromProto()

Allocate a new type based on the given type. The given type’s tag members will be referenced in the new type.
No data members are added except for the typename member. Proto must be a custom type.

public int typeAllocFromProto(LassoTypeRef inProto, LassoTypeRef outType);

typeAllocOneOff()

Allocate a new type with the given name. The type does not have to have been registered as a type initializer
or registered at all. The new type will have no tag or data members, but those may be added using the appro-
priate LCAPI call at any time. If no parent type is provided (a NULL pointer or empty string is passed in),
type null will be the default. If a parent type is provided, it must have been a validly registered type initializer.
onCreate will be called for the parent and beyond.

public int typeAllocOneOff(String inName, String inParentTypeName, LassoTypeRef outType);

typeGetCustomJavaObject()

Custom types can have Java objects attached to them. The object can be retrieved at any point during the
instance’s lifetime. typeSetCustomJavaObject method retrieves the Java object associated with a custom type, or
returns null if no object has been attached to this type.

8 0 3

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

 public Object typeGetCustomJavaObject(LassoTypeRef type);

typeSetCustomJavaObject()

typeSetCustomJavaObject permits attachment of Java objects to custom types. Java object is retained until
typeFreeCustomJavaObject is called, or the type is destroyed.

public int typeSetCustomJavaObject(LassoTypeRef type, Object object);

typeFreeCustomJavaObject()

Releases the Java object previously attached to a custom type. Must be called to free the Java object that is no
longer needed, or to detach an old Java object before attaching a new one to the same custom type.

public int typeFreeCustomJavaObject(LassoTypeRef type);

Logging Function Methods

log()

Logs a message. The message goes to the prefered destination for the message level. Messages sent to a file
are limited to 2048 bytes in length. Messages sent to the console are limited to 512 bytes in length. Messages
sent to the database are limited a little less than 2048 bytes since the total length of the sql statement
used to insert the message is limited to 2048 bytes. The msgLevel parameter must be one of the following:
LOG_LEVEL_CRITICAL, LOG_LEVEL_WARNING, or LOG_LEVEL_DETAIL.

public static int log (int msgLevel, String message);

logSetDestination()

Changes the system-wide log destination preference. You can log messages to more than one destination at
a time by passing several flags in the destination parameter: FLAG_DEST_CONSOLE, FLAG_DEST_FILE, and/or
FLAG_DEST_DATABASE.

public static int logSetDestination(int msgLevel, int destination);

MIME Header Methods

getResultHeader()

Retrieves current value of the result (HTTP) header. Part of the header that is returned to browsers is
automatically built by Lasso, and can be modi-fied or added to by Lasso tags on the page. This function
retrieves the current set of MIME headers that would be sent back to the browser if page processing were to
stop now.

public int getResultHeader(LassoValue result);

setResultHeader()

Sets the result header, any data will be validated so as to be in the proper format.

public int setResultHeader(String header);

addResultHeader()

Simply appends the supplied data to the header, any data will be validated so as to be in the proper format.

public int addResultHeader(String data);

getCookieValue()

Retrieves a cookie value from the passed-in data sent by the client browser.

public int getCookieValue(String named, LassoValue value);

8 0 4

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

Page Variable Methods

getVariableCount()

Retrieves the number of array values which the named global variable has. Returns 1 if the global
variable is not an array. Global variables are the same variables which you create in Lasso statements, like
[var: 'fred'=1234.56]. These variables last only as long as the current Lasso page is executing; as soon as the hit
gets sent back to the browser, these variables all get destroyed.

public int getVariableCount(String named, IntValue count);

getVariable()

Retrieves the value of the named global variable. If the global variable is an array, then the index specifies
which array value to retrieve. If the global variable is not an array, then 0 is the only valid index. Array indices
start at 0.

public int getVariable(String named, int index, LassoValue value);

getVariable2()

Retrieves the value of the named global variable while preserving the variable type.

public int getVariable2(String named, LassoTypeRef outValue);

setVariable()

Stores a new value into the named global variable. If the global variable is an array, then the 0-based index
determines which array item to replace.

public int setVariable(String named, String value, int index);

setVariable2()

Stores a new global variable while preserving the type.

public int setVariable2(String named, LassoTypeRef inValue);

removeVariable()

Removes the specified variable (destroys it so it becomes undefined, as though it had never been created). If
the named variable is an array, then you may pass in an index (0-based) to remove that array element. Once
the array has 0 elements, then calling removeVariable on it will destroy the array itself.

public int removeVariable(String named, int index);

Lasso tag Interpreter Methods

formatBuffer()

Formats the supplied buffer and puts the resulting data in the data field of the LassoValue. The buffer should
consist of plain text and bracketed Lasso tags.

public int formatBuffer(String buffer, LassoValue output);

Persistent Storage Tag Methods

storeHasData()

Returns ERR_NOERR if the data, specified by key, exists. The length of the stored data can be returned in the
outLength parameter if you pass a valid IntValue object. You may pass null if you don’t want to retrieve the length
of the stored data.

public int storeHasData(String key, IntValue outLength);

storeGetData()

Fetches data that has been stored under the unique identifier key. The data will be returned in the data field of
the LassoValue object.

8 0 5

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

public int storeGetData(String key, LassoValue outValue);

storePutData()

Adds the data to Lasso’s storage. Key is the unique identifier for the data.

public int storePutData(String key, String data);
public int storePutData(String key, byte[] data);

Administration Methods

isAdministrator()

Returns ERR_NOERR if the current user has administrator privileges. This is useful for doing module
administration that only the administrator should be able to do.

public int isAdministrator();

Data Source Function Methods

getDSConnection()

This function accesses the current datasource connection.

public Object getDSConnection();

setDSConnection()

This function sets the current connection for the data source. May recurse to deliver the ACTION_CLOSE
message if there is already a valid connection set.

public int setDSConnection(Object inConnection);

addDataSourceResult()

Sometimes Lasso Professional will query a data source function to return information, such as a list of
database names or table names which the data source module controls. The module will call this function
once for each name you add to the list, so if you have three database names you want to report back to Lasso
Professional, you would call this function three times, once per database name.

public int addDataSourceResult(String data);

getDataSourceName()

Use this function when you want to ask Lasso Professional what database is being operated on. For instance,
if you’re being asked to perform a search, then you would call this function to retrieve the name of the
data-base which Lasso Professional is asking you to search. It corresponds to the value of the parameter
-Database='blah' passed to inlines. Optionally, you can use the second (outUseHostDefault) parameter to
determine whether the current database inherits its host default settings.

Note: Even though the name of the method is getDataSourceName, it really retrieves the database name . This is
purely cosmetic, and just happens to be how the APIs were spelled when they were originally designed .

public int getDataSourceName(LassoValue outName,
 BoolValue outUseHostDefault,
 LassoValue outUsernamePassword);

getDataHost()

Use this function when you want to ask Lasso Professional 8 what database host is being operated on. On
return, LassoValue will contain the name and port of the database host.

public int getDataHost(LassoValue outHost,
 LassoValue outUsernamePassword);

getDataHost2()

Same as getDataHost() but allows the usage of a host schema parameter for JDBC data sources.

8 0 6

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

public int getDataHost2(LassoValue outHost,
 LassoValue outSchema,
 LassoValue outUsernamePassword);

getSchemaName()

Use this function when you want to ask Lasso Professional what schema is being operated on for a JDBC data
source. For instance, if you’re being asked to perform a search, then you would call this function to retrieve
the name of the schema which Lasso Professional is asking you to use for the search. It corresponds to the
value of the parameter -Schema='blah' passed to inlines.

public int getSchemaName(LassoValue outName);

getTableName()

Use this function when you want to ask Lasso Professional what table is being operated on. For instance, if
you’re being asked to perform a search, then you would call this function to retrieve the name of the table
which Lasso Professional is asking you to search. It corresponds to the value of the parameter -Layout='blah' or
-Table='blah' passed to inlines.

public int getTableName(LassoValue outName);

getSkipRows()

You can ask Lasso Professional to tell you how many records should be skipped during a search by calling
this function. It corresponds to the value of the -SkipRecords parameter in the inline search which is being
executed at the moment your data source function is being called.

public int getSkipRows(IntValue outRows);

getMaxRows()

You can ask Lasso Professional to tell you the maximum number of records to be returned during a search
by calling this function. It corresponds to the value of the -MaxRecords parameter in the inline search which is
being executed at the moment your data source function is being called.

public int getMaxRows(IntValue outRows);

getPrimaryKeyColumn()

You can ask Lasso Professional to tell you which field is being used as the primary key. This value corresponds
to the -KeyField parameter value used in the inline.

public int getPrimaryKeyColumn(LassoValue outColumn);

getInputColumnCount()

Tells how many fields were sent as parameters to the inline. For instance, if a Lasso programmer wants to
append a new record to a table, and passes in name, address, city, state, zip with values for each field, then
this function will return the number 5 to indicate that five fields were passed to the inline. You can then
retrieve the values of each of these parameters by calling getInputColumn by index, once per field. This function
is smart enough to ignore parameters which are not fields, such as -Database, -Layout, etc.

public int getInputColumnCount(IntValue outCount);

getInputColumn()

Retrieve the name and value of field data parameters from the inline, starting at index zero. If five fields were
entered into the inline, then you can retrieve each of their names and values by calling this function five
times, once per field.

[Inline: -Database='MyDatabase', -Table='Main', 'MyFirstField'='Bill', 'MySecondField'='Ted', -Search]

In the above example, calling getInputColumn(0, v) will fill the v variable with v.name=MyFirstField, v.data=Bill.
Notice it is smart enough to ignore well-known parameters such as -Table, thus only retrieving field
information.

public int getInputColumn(int index, LassoValue outColumn);

8 0 7

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

getSortColumnCount()

Analogous to getInputColumnCount, this method retrieves the number of sort columns which were specified in
the inline code. It basically counts how many -SortField parameters were passed. You can use this count to tell
you how many times to enumerate through calls to getSortColumn.

public int getSortColumnCount(IntValue outCount);

getSortColumn()

Analogous to lasso_getInputColumn(), this function retrieves the names of sort parameters, starting at index zero.
After calling this, the data field of outColumn variable will contain a String with the name of the sort field.

public int getSortColumn(int index, LassoValue outColumn);

getRowID()

Retrieves the current specified record ID (datasource-specific).

public int getRowID(IntValue outId);

setRowID()

Sets the record ID of the added record. After your custom LCAPI data source finishes adding a record to a
database, it can call this function to let the caller know what the unique record ID of the added record was.

In FileMaker, this record ID is a standard feature of all records in its tables. In MySQL, this value is 0 unless
there exists an AUTO_INCREMENT column. Results are not guaranteed for all database server software.

public int setRowID(int id);

findInputColumn()

Analogous to getInputColumn, except that it searches by name instead of index. If you already know the name
of a field parameter you’re interested in, then you can ask for the value of that parameter which was passed
into the inline.

[Inline: -Database='MyDatabase', -Table='Main', 'MyFirstField'='Bill', 'MySecondField'='Ted', -Search]

In the example above, calling findInputColumn("MySecondField", outColumn) will fill the outColumn variable’s data
member with v.data=Ted.

public int findInputColumn(String name, LassoValue outColumn);

getLogicalOp()

Call this to retrieve the logical operator (OP_AND, OP_OR) which was passed to this inline. It corresponds
to the value of -LogicalOperator passed into the inline. This function simply retrieves a single logical operator
parameter. For more complex logical operations, with multiple operators, you will have to design a
convention whereby you name your input fields in some unique way, and then retrieve those custom logical
operators using the getInputColumn function in a particular order that matches your convention.

public int getLogicalOp(IntValue outOp);

getReturnColumnCount()

Queries Lasso Professional to return the number of columns (fields) that are expected to be returned from a
search operation. This counts how many -ReturnField parameters were encountered.

public int getReturnColumnCount(IntValue outCount);

getReturnColumn()

Once you know how many return columns are expected (from getReturnColumnCount), then you can enumerate
through them to get their fieldnames. Use this information to retrieve field data from your database table,
and populate the result rows when asked to perform a search operation.

public int getReturnColumn(int index, LassoValue outColumn);

8 0 8

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

addColumnInfo()

In order to return a row of data from your data source (perhaps as a result of a search), you must first
indicate what the structure of the table columns is. Call this function for as many table columns as your
database has, providing the fieldname, true/false if nulls are OK in this field, the field type (numeric, string,
date, etc), and field protection (readonly, writeable, etc).

 public int addColumnInfo(String name,
 int nullOK,
 int type,
 int protection);

addResultRow()

Call this method once per row of records you want to return (perhaps from a search operation). You may
choose to return an array of Strings, or construct an array of byte arrays that contain data for each of your
fields (binary data is OK).

public int addResultRow(String[] columns);
public int addResultRow(byte[][] columns);

setNumRowsFound()

Corresponds to [Found_Count] in Lasso. Call this when you know how many records your data source is going
to return, and make sure you call addResultRow this many times in order to populate the rows.

public int setNumRowsFound(int num);

Semaphore Methods
createSem()

Creates a named semaphore sufficient for synchronizing multithreaded operations, which should be deleted
after they are used. The Lasso Connector for MySQL example creates one of these at initialization time, and
destroys it at terminate time.

public int createSem(String name);

destroySem()

Destroys a named semaphore that was created by the createSem method.

public int destroySem(String name);

acquireSem()

Attempts to acquire a lock on a semaphore, and waits until the owning thread has released the semaphore
before acquiring the lock and continuing execution.

public int acquireSem(String name);

releaseSem()

Releases a locked semaphore so that other threads waiting for the semaphore can continue execution.

public int releaseSem(String name);

com.omnipilot.lassopro.LassoDSModule
Base class for all datasource modules. LassoDSModules are used to manipulate data sources. LassoDSModules are
looked up by the datasource names they claim to support. They are instantiated once and used repeatedly by
Lasso.

registerDSModule()

Your code must call this once at startup (from within your registerLassoModule() method) to register a data
source with Lasso Professional. When Lasso encounters a data source request for moduleName, it calls the Java
method methodName.

8 0 9

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

 protected void registerDSModule(String datasourceName,
 String methodName,
 int flags,
 String moduleName,
 String description);

DS_METHOD_PROTOTYPE()

A prototype for all datasource action methods registered by registerDSModule. Since methods are being looked
up by name, they must match exactly the values passed in a methodName parameter of the registerDSModule call.

 public int DS_METHOD_PROTOTYPE(LassoCall lasso,
 int action,
 LassoValue data);

com.omnipilot.lassopro.LassoEncodings
Constants for the various text encoding methods.

ENCODE_BREAK

Static variable in class omnipilot.lasso.LassoTagEncodings.

public static final int ENCODE_BREAK

ENCODE_DEFAULT

Static variable in class com.omnipilot.lassopro.LassoEncodings.

public static final int ENCODE_DEFAULT

ENCODE_NONE

Static variable in class com.omnipilot.lassopro.LassoEncodings.

public static final int ENCODE_NONE

ENCODE_RAW

Static variable in class com.omnipilot.lassopro.LassoEncodings.

public static final int ENCODE_RAW

ENCODE_SMART

Static variable in class com.omnipilot.lassopro.LassoEncodings.

public static final int ENCODE_SMART

ENCODE_STRICT_URL

Static variable in class com.omnipilot.lassopro.LassoEncodings.

public static final int ENCODE_STRICT_URL

ENCODE_URL

Static variable in class com.omnipilot.lassopro.LassoEncodings.

public static final int ENCODE_URL

ENCODE_XML

Static variable in class com.omnipilot.lassopro.LassoEncodings.

public static final int ENCODE_XML

com.omnipilot.lassopro.LassoErrors
Constants for the various error codes which can be returned by your module.

NO_ERR

Static variable in class com.omnipilot.lassopro.LassoErrors.

8 1 0

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

public static final int NO_ERR

Assert

Static variable in class com.omnipilot.lassopro.LassoErrors.

public static final int Assert

StreamReadError

Could not write to stream.

public static final int StreamReadError

StreamWriteError

Could not read from stream.

public static final int StreamWriteError

Memory

Generic memory error.

public static final int Memory

InvalidMemoryObject

Invalid memory object.

public static final int InvalidMemoryObject

OutOfMemory

Not enough memory.

public static final int OutOfMemory

OutOfStackSpace

Stack overflow error.

public static final int OutOfStackSpace

CouldNotDisposeMemory

Error disposing an object.

public static final int CouldNotDisposeMemory

File

Generic file error.

public static final int File

FileInvalid

Trying to work with an invalid file.

public static final int FileInvalid

FileInvalidAccessMode

Trying to access a file in a mode that it doesn’t support.

public static final int FileInvalidAccessMode

CouldNotCreateOrOpenFile

Could not create or open the file.

public static final int CouldNotCreateOrOpenFile

CouldNotCloseFile

Could not close the file.

public static final int CouldNotCloseFile

8 1 1

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

CouldNotDeleteFile

Could not delete the file.

public static final int CouldNotDeleteFile

FileNotFound

File does not exist.

public static final int FileNotFound

FileAlreadyExists

Trying to create a file that already exist.

public static final int FileAlreadyExists

FileCorrupt

File is corrupted.

public static final int FileCorrupt

VolumeDoesNotExist

Bad volume name.

public static final int VolumeDoesNotExist

DiskFull

No room left on disk.

public static final int DiskFull

DirectoryFull

No more items allowed in the directory.

public static final int DirectoryFull

IOError

I/O error.

public static final int IOError

InvalidPathname

Pathname is invalid.

public static final int InvalidPathname

InvalidFilename

Filename is invalid.

public static final int InvalidFilename

FileLocked

File is locked.

public static final int FileLocked

FileUnlocked

File is unlocked.

public static final int FileUnlocked

FileIsOpen

File is open.

public static final int FileIsOpen

8 1 2

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

FileIsClosed

File is closed.

public static final int FileIsClosed

BOF

Beginning of file reached.

public static final int BOF

EOF

End of file reached.

public static final int EOF

CouldNotWriteToFile

Unable to complete a write operation to the file.

public static final int CouldNotWriteToFile

CouldNotReadFromFile

Unable to complete a read operation from the file.

public static final int CouldNotReadFromFile

Resource

Unknown resource error.

public static final int Resource

ResNotFound

Resource not found.

public static final int ResNotFound

Network

Unknown networking error.

public static final int Network

InvalidUsername

The username supplied for the action is not valid.

public static final int InvalidUsername

InvalidPassword

The password supplied for the action is not valid.

public static final int InvalidPassword

InvalidDatabase

The database name supplied is not valid.

public static final int InvalidDatabase

NoPermission

General permissions error.

public static final int NoPermission

FieldRestriction

The specified action is restricted.

public static final int FieldRestriction

WebAddError

Add record error.

8 1 3

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

public static final int WebAddError

WebUpdateError

Update record error.

public static final int WebUpdateError

WebDeleteError

Delete record error.

public static final int WebDeleteError

InvalidParameter

An invalid parameter was passed to a function.

public static final int InvalidParameter

Overflow

Allocated memory was too small to hold the results.

public static final int Overflow

NilPointer

A pointer was null when it shouldn’t have been.

public static final int NilPointer

UnknownError

Default when none of the cross-platform errors seem to fit.

public static final int UnknownError

FormattingLoopAborted

A looping tag was aborted; all looping tags must catch this exception.

public static final int FormattingLoopAborted

FormattingSyntaxError

Bad syntax used in a Lasso page; parsing of the file was aborted.

public static final int FormattingSyntaxError

WebRequiredFieldMissing

Value missing for required field for Add.

public static final int WebRequiredFieldMissing

WebRepeatingRelatedField

Adding repeating related fields isn’t supported.

public static final int WebRepeatingRelatedField

WebNoSuchObject

No records found.

public static final int WebNoSuchObject

WebTimeout

Operation timed out.

public static final int WebTimeout

WebActionNotSupported

Action not supported.

public static final int WebActionNotSupported

8 1 4

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

WebConnectionInvalid

The specified database was not found.

public static final int WebConnectionInvalid

WebModuleNotFound

The module was not found.

public static final int WebModuleNotFound

HTTPFileNotFound

The file was not found.

public static final int HTTPFileNotFound

DatasourceError

Third-party generic datasource error.

public static final int DatasourceError

com.omnipilot.lassopro.LassoOperators
Operator constants used throughout LJAPI.

Variables

OP_AND

Logical operator AND.

public static final int OP_AND

OP_ANY

Used for -Random database action.

public static final int OP_ANY

OP_BEGINS_WITH

Field search operator BW.

public static final int OP_BEGINS_WITH

OP_CONTAINS

Field search operator CN.

 public static final int OP_CONTAINS

OP_DEFAULT

Same as OP_BEGINS_WITH.

public static final int OP_DEFAULT

OP_ENDS_WITH

Field search operator EW.

public static final int OP_ENDS_WITH

OP_EQUALS

Field search operator EQ.

public static final int OP_EQUALS

OP_GREATER_THAN

Field search operator GT.

public static final int OP_GREATER_THAN

8 1 5

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

OP_GREATER_THAN_EQUALS

Field search operator GTE.

public static final int OP_GREATER_THAN_EQUALS

OP_IN_FULL_TEXT

Field search operator FT.

public static final int OP_IN_FULL_TEXT

OP_IN_LIST

Static variable in class com.omnipilot.lassopro.LassoOperators.

public static final int OP_IN_LIST

OP_IN_REGEXP

Field search operator RX.

public static final int OP_IN_REGEXP

OP_LESS_THAN

Field search operator LT.

public static final int OP_LESS_THAN

OP_LESS_THAN_EQUALS

Field search operator LTE.

public static final int OP_LESS_THAN_EQUALS

OP_NO

Same as OP_NOT.

public static final int OP_NO

OP_NOT

Logical operator NOT.

public static final int OP_NOT

OP_NOT_BEGINS_WITH

Field search operator NBW.

public static final int OP_NOT_BEGINS_WITH

OP_NOT_CONTAINS

Field search operator NCN.

public static final int OP_NOT_CONTAINS

OP_NOT_ENDS_WITH

Field search operator NEW.

public static final int OP_NOT_ENDS_WITH

OP_NOT_EQUALS

Field search operator NEQ.

public static final int OP_NOT_EQUALS

OP_NOT_IN_LIST

Static variable in class com.omnipilot.lassopro.LassoOperators.

public static final int OP_NOT_IN_LIST

OP_NOT_IN_REGEXP

Field search operator NRX.

8 1 6

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

public static final int OP_NOT_IN_REGEXP

OP_OR

Logical operator OR.

public static final int OP_OR

com.omnipilot.lassopro.LassoParams
These constants signify the different parameters which can be retrieved from the LassoCall.getLassoParam
method.

ModulesFolderPath

Path to the LassoModules folder.

public static final int ModulesFolderPath

StartupItemsFolderPath

Path to LassoStartup folder.

public static final int StartupItemsFolderPath

LassoErrorsFilePath

Path to Lasso error log file.

public static final int LassoErrorsFilePath

StorageHost

Location of Lasso MySQL datasource.

public static final int StorageHost

ScriptsRoot

Relative path to scripts root.

public static final int ScriptsRoot

ScriptsSiteRoot

Relative path to site scripts root (most likely includes ScriptsRoot).

public static final int ScriptsSiteRoot

com.omnipilot.lassopro.LassoTagModule
Base class for any tag module. Most tag modules output data onto the Web page, though some tags may
perform other actions based on the parameters passed to them.

Every LassoTagModule must implement registerLassoModule method, and one or more methods with the same
signature as TAG_METHOD_PROTOTYPE.

Lasso calls registerLassoModule once at startup to give the module a chance to register its tags. LassoTagModule
must then call registerTagModule as many times as there are tags implemented by this module.

Variables

FLAG_INITIALIZER

Type initializer tags can have their own members.

public static final int FLAG_INITIALIZER

FLAG_SUBSTITUTION

Regular substitution tags.

public static final int FLAG_SUBSTITUTION

8 1 7

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

FLAG_ASYNC

Async tags run asynchronously in their own thread.

public static final int FLAG_ASYNC

FLAG_CONTAINER

Container tags have opening and closing. This flag will cause Lasso Professional to raise an error if the closing
tag can’t be found.

public static final int FLAG_CONTAINER

Methods

registerTagModule()

Use this method to register substitution tags implemented by your module. You should call registerTagModule
as many times as there are tags implemented in your module.

moduleName parameter is the name of the module as returned by [Lasso_TagModuleName] Lasso tag. tagName is
the name of the custom Lasso tag implemented by this module. One or more OR logical FLAG constants can
be passed in the flags parameter to specify unique tag features. Finally, a description parameter can be used to
provide optional tag info, such as brief description of the tag usage.

protected void registerTagModule(String moduleName,

 String tagName,
 String methodName,
 int flags,
 String description);

com.omnipilot.lassopro.LassoTypeRef
This class is used for creating and manipulating custom Lasso types. Unlike LassoValue or IntValue objects
which store copies of the data, LassoTypeRef is merely a reference to a native object instance. Native objects
exist for a fraction of a second while Lasso is processing a page, therefore the LassoTypeRef objects should
never be stored or reused across multiple module invocations.

Variables

LASSO_ARRAY

The name of the built-in array type in Lasso Professional 8.

public static final String LASSO_ARRAY

LASSO_BOOLEAN

The name of the built-in boolean type in Lasso Professional 8.

public static final String LASSO_BOOLEAN

LASSO_DATE

The name of the built-in date type in Lasso Professional 8.

public static final String LASSO_DATE

LASSO_DECIMAL

The name of the built-in decimal type in Lasso Professional 8.

public static final String LASSO_DECIMAL

LASSO_INTEGER

The name of the built-in integer type in Lasso Professional 8.

public static final String LASSO_INTEGER

8 1 8

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

LASSO_MAP

The name of the built-in map type in Lasso Professional 8.

public static final String LASSO_MAP

LASSO_NULL

The name of the built-in null type in Lasso Professional 8.

public static final String LASSO_NULL

LASSO_PAIR

The name of the built-in pair type in Lasso Professional 8.

public static final String LASSO_PAIR

LASSO_STRING

The name of the built-in string type in Lasso Professional 8.

public static final String LASSO_STRING

LASSO_TAG

The name of the built-in tag type in Lasso Professional 8.

public static final String LASSO_TAG

Methods

isNull()

Returns true if this object does not refer to a valid type instance, which most likely would be a result of a
failed LassoCall method.

public boolean isNull();

toString()

Returns string representation of the LassoTypeRef object. Overrides toString method in the class Object.

public String toString();

com.omnipilot.lassopro.LassoValue
Used for retrieving values from various LassoCall methods. Has name and data member variables of type String.
The type member is set to one of the TYPE constants, reflecting the original type of the value before it was
converted to string.

Variables

TYPE_ARRAY

Array type.

public static final int TYPE_ARRAY

TYPE_BLOB

Binary data.

public static final int TYPE_BLOB

TYPE_BOOLEAN

Boolean type.

public static final int TYPE_BOOLEAN

TYPE_CHAR

String type.

8 1 9

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

public static final int TYPE_CHAR

TYPE_CODE

Substitution tag code.

public static final int TYPE_CODE

TYPE_CUSTOM

Custom type.

public static final int TYPE_CUSTOM

TYPE_DATETIME

Date type.

public static final int TYPE_DATETIME

TYPE_DECIMAL

Decimal type.

public static final int TYPE_DECIMAL

TYPE_INT

Integer type.

public static final int TYPE_INT

TYPE_MAP

Map type.

public static final int TYPE_MAP

TYPE_NULL

Null type.

public static final int TYPE_NULL

TYPE_PAIR

Pair type.

public static final int TYPE_PAIR

TYPE_REFERENCE

Reference type.

public static final int TYPE_REFERENCE

Constructors

public LassoValue();
public LassoValue(int type);
public LassoValue(String data);
public LassoValue(String name, String data);
public LassoValue(String name, String data, int type);

Methods

data()

Returns the String object stored in the data field.

public String data();

8 2 0

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

name()

Returns the String object stored in the name field.

public String name();

setData()

Sets the value of the data field.

public String setData(String data);

setName()

Sets the value of the name field.

public String setName(String name);

setType()

Sets the value of the type field.

public int setType(int type);

toString()

Converts this object to String.

public String toString()

type()

Returns the original type of the data retrieved from one of the LassoCall methods: TYPE_CHAR for strings,
TYPE_INT for integers, and so on.

For unnamed tag parameters, the type field is set to the type of the data stored in the data field. For named tag
parameters, it reflects the type of the value member.

public int type();

com.omnipilot.lassopro.RequestParams
These constants signify the different parameters which can be retrieved from the LassoCall.getRequestParam
method.

AddressKeyword

IP address of client browser.

public static final int AddressKeyword

ActionKeyword

Type of HTTP request (GET, POST, etc.).

public static final int ActionKeyword

ClientIPAddress

IP address of client browser.

public static final int ClientIPAddress

ContentLength

The length in bytes of the POST data sent from <form POST>.

public static final int ContentLength

ContentType

MIME header sent from client browser.

public static final int ContentType

8 2 1

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

FullRequestKeyword

All MIME headers, uninterpreted.

public static final int FullRequestKeyword

MethodKeyword

GET or POST, depending on <form method>.

public static final int MethodKeyword

PasswordKeyword

Password sent from browser.

public static final int PasswordKeyword

PostKeyword

HTTP object body (form data, etc.).

public static final int PostKeyword

ReferrerKeyword

URL of referring page.

public static final int ReferrerKeyword

ScriptName

Relative path from server root to a Lasso page.

public static final int ScriptName

SearchArgKeyword

All text in URL after the question mark.

public static final int SearchArgKeyword

ServerName

IP address or host name of the server on which the Web server is running.

public static final int ServerName

ServerPort

IP port this hit came to (80 is common, 443 for SSL).

public static final int ServerPort

UserAgentKeyword

Browser name and type.

public static final int UserAgentKeyword

UserKeyword

Username sent from browser.

public static final int UserKeyword

8 2 2

L a s s o 8 . 5 L a n g u a g e g u i d e

C h a p t e r 6 9 – L J a p i r e F e r e n C e

A
Appendix A

Error Codes

This appendix contains a list of all known error codes that Lasso Professional 8, Lasso MySQL, or FileMaker
Pro will return.

	 •	Lasso Professional 8 Error Codes contains a list of all error codes which are generated by Lasso
Professional 8.

	 •	Lasso MySQL Error Codes contains a list of all error codes which are generated by Lasso MySQL or
another MySQL data source.

	 •	FileMaker Pro Error Codes contains a list of known error codes which are generated by FileMaker Pro
when used as a data source.

In addition to the error codes described in this appendix, Lasso Professional 8 will report any unknown errors
it receives from the operating system, Web server applications, or data source applications it communicates
with. Please consult the documentation for the operating system and each application for more information
about the error codes they may report.

For information about how to gracefully handle and recover from errors, please see the Error Control chapter.

Lasso Professional 8 Error Codes
The following Table 1: Lasso Professional Error Codes lists all of the native error codes of Lasso Professional
8. The error codes are listed in numerical order and are divided into general categories for easier reading.
Many of the error codes descriptions contain helpful information about what to do to correct or prevent the
error.

8 2 3

L a s s o 8 . 5 L a n g u a g e g u i d e

Table 1: Lasso Professional 8 Error Codes

Error Code Description

0 No Error.

-609 The specified database was not found. Lasso could not find the specified
database. This error usually occurs when a database is not open or not
accessible by Lasso. Make sure the specified database is open.

-700 Could not find email Lasso page. The Lasso page specified by an -Email.Format
command tag could not be found. Check the spelling of the file name. Make sure
the path to the file is specified properly.

-701 All email tags must be assigned a value. In order for an email message to be
sent, all five of the email parameters (-Email.Host, -Email.From, -Email.To,
-Email.Subject, and -Email.Format) must be specified. Make sure you have
specified values for all five parameters in your HTML form. Make sure the
parameter names are spelled correctly.

Database Errors

-800 Value missing for required field. The value of one or more required field was not
specified. Make sure that all required fields are supplied with a value.

-801 Repeating related fields are not supported. An attempt to retrieve data from
a repeating related field failed. Lasso does not support retrieving data from
repeating related fields.

-802 Action not supported. The specified Lasso action is not supported by the
specified database or data source.

-1712 Timeout. A database action timed out.

-1728 No records found. No records were found in the specified database.

-2000 The module was not found. The requested module was not found. Make sure that
the module is located in the "Lasso Modules" folder and relaunch the Web server
and/or Lasso.

-3000 A data source error has occured.

 continued

8 2 4

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x a – e r r o r C o d e s

Syntax Errors

-9951 A syntax error occurred. Invalid or incorrect syntax was used. Correct the syntax.

-9952 A looping tag was aborted.

-9953 Unknown error.

Internal Errors

-9954 A pointer was nil when it should not have been.

-9955 Overflow: Some memory passed to a function that was too small to hold the
results.

-9956 An invalid parameter was passed to a function.

Action Errors

-9957 Delete error. An error occurred while deleting a record from the specified
database. Make sure that the database or data source is set to allow record
deletion.

-9958 Update error. An error occurred while updating a record from the specified
database. Make sure that the database or data source is set to allow records to
be updated.

-9959 Add error. An error occurred while adding a record to the specified database.
Make sure that the database or data source is set to allow records to be added.

-9960 Field restriction. A field security restriction prevented the action from being
executed. Edit field security restrictions as configured within Lasso security.

Security Errors

-9961 No permission. The current user is not allowed to perform the specified action.
This could mean that a file suffix is not allowed by Lasso security. Edit user
security permissions as configured within Lasso security.

-9962 Invalid database. The database or data source name is not valid.

-9963 Invalid password. The password supplied is not valid.

-9964 Invalid user name. The user name supplied is not valid.

-9965 Network error. An error occurred accessing the network connection. This error
usually occurs while communicating with FileMaker Pro over TCP/IP. Try quitting
and restarting the FileMaker Pro client.

-9966 Resource error.

-9967 Resource not found.

 continued

8 2 5

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x a – e r r o r C o d e s

File Errors

-9968 Could not read from file.

-9969 Could not write to file.

-9970 End of file reached.

-9971 Beginning of file reached.

-9972 File is closed.

-9973 File already open with write permission.

-9974 File Unlocked.

-9975 File locked.

-9976 Invalid filename.

-9977 Invalid pathname.

-9978 I/O error.

-9979 Directory full.

-9980 Disk full.

-9981 Volume does not exist.

-9982 The file is corrupt.

-9983 File already exists.

-9984 Unauthorized file suffix or file not found.The error -9984 can be seen if you
specify a Lasso page with a file suffix which is not included in the Lasso Security
settings. Also returned by file management tags.

-9985 Could not delete file.

-9986 Could not close file.

-9987 Could not create or open file.

-9988 Invalid access mode.

-9990 File error.

 continued

Memory Errors

-9991 Could not dispose memory.

-9992 Could not unlock memory.

-9993 Could not lock memory.

-9994 Lasso ran out of stack space. This error may occur when a Lasso page contains
too many deeply nested container tags. The [Variable] tag can be used in order to
significantly reduce the number on nested tags in a Lasso page.

-9995 Lasso ran out of memory. Increase the memory which is available to the server
running Lasso.

-9996 Invalid memory object.

-9997 Memory error.

-9998 Error writing to stream.

-9999 Error reading from stream.

8 2 6

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x a – e r r o r C o d e s

Lasso MySQL Error Codes
All of the known error codes in Lasso MySQL are listed in Table 2: Lasso MySQL Error Codes. Additional
error codes may be reported if Lasso MySQL encounters an operating system error. If Lasso receives one of
these error codes from Lasso MySQL or another MySQL data source then it will be passed on to the site
visitor.

Table 2: Lasso MySQL Error Codes

Error Code Description

1 Operation not permitted.

2 No such file or directory.

3 No such process.

4 Interrupted system call.

5 Input/output error.

6 Device not configured.

7 Argument list too long.

8 Exec format error.

9 Bad file descriptor.

10 No child processes.

11 Resource deadlock avoided.

12 Cannot allocate memory.

13 Permission denied.

14 Bad address.

15 Block device required.

16 Device busy.

17 File exists.

18 Cross-device link.

19 Operation not supported by device.

20 Not a directory.

21 Is a directory.

22 Invalid argument.

23 Too many open files in system.

24 Too many open files.

25 Inappropriate ioctl for device.

 continued

8 2 7

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x a – e r r o r C o d e s

26 – 50

26 Text file busy.

27 File too large.

28 No space left on device.

29 Illegal seek.

30 Read-only file system.

31 Too many links.

32 Broken pipe.

33 Numerical argument out of domain.

34 Result too large.

35 Resource temporarily unavailable.

36 Operation now in progress.

37 Operation already in progress.

38 Socket operation on non-socket.

39 Destination address required.

40 Message too long.

41 Protocol wrong type for socket.

42 Protocol not available.

43 Protocol not supported.

44 Socket type not supported.

45 Operation not supported.

46 Protocol family not supported.

47 Address family not supported by protocol family.

48 Address already in use.

49 Can't assign requested address.

50 Network is down.

 continued

8 2 8

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x a – e r r o r C o d e s

51 – 75

51 Network is unreachable.

52 Network dropped connection on reset.

53 Software caused connection abort.

54 Connection reset by peer.

55 No buffer space available.

56 Socket is already connected.

57 Socket is not connected.

58 Can't send after socket shutdown.

59 Too many references: can't splice.

60 Operation timed out.

61 Connection refused.

62 Too many levels of symbolic links.

63 File name too long.

64 Host is down.

65 No route to host.

66 Directory not empty.

67 Too many processes.

68 Too many users.

69 Disc quota exceeded.

70 Stale NFS file handle.

71 Too many levels of remote in path.

72 RPC struct is bad.

73 RPC version wrong.

74 RPC prog. not avail.

75 Program version wrong.

 continued

8 2 9

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x a – e r r o r C o d e s

76 – 150

76 Bad procedure for program.

77 No locks available.

78 Function not implemented.

79 Inappropriate file type or format.

80 Authentication error.

81 Need authenticator.

82 Device power is off.

83 Device error.

84 Value too large to be stored in data type.

85 Bad executable (or shared library).

86 Bad CPU type in executable.

87 Shared library version mismatch.

88 Malformed Mach-O library file.

120 Didn't find key on read or update.

121 Duplicate key on write or update.

123 Someone has changed the row since it was read.

124 Wrong index given to function.

126 Index file is crashed / Wrong file format.

127 Record-file is crashed.

131 Command not supported by database.

132 Old database file.

133 No record read before update.

134 Record was already deleted (or record file crashed).

135 No more room in record file.

136 No more room in index file.

137 No more records (read after end of file).

138 Unsupported extension used for table.

139 Too big row (>= 16 M).

140 Wrong create options.

141 Duplicate unique key or constraint on write or update.

142 Unknown character set used.

143 Conflicting table definition between MERGE and mapped table.

144 Table is crashed and last repair failed.

145 Table was marked as crashed and should be repaired.

FileMaker Pro Error Codes
All of the known error codes for the FileMaker Pro Web Companion as of FileMaker Pro 5.5v3 are listed in
Table 3: FileMaker Pro Error Codes. Additional error codes may be reported if FileMaker Pro encounters an
operating system error. If Lasso receives one of these error codes from a FileMaker Pro data source, it will be
passed on to the site visitor.

8 3 0

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x a – e r r o r C o d e s

Table 3: FileMaker Pro Error Codes

Error Code Description

-1 Unknown Error.

0 No Error.

1 User cancelled action.

2 Memory error.

3 Command is unavailable.

4 Command is unknown.

5 Command is invalid.

100 – 199

100 File is missing.

101 Record is missing.

102 Field is missing.

103 Relation is missing.

104 Script is missing.

105 Layout is missing.

200 – 299

200 Record access is denied.

201 Field cannot be modified.

202 Field access is denied.

203 No records in file to print or password doesn't allow print access.

204 No access to field(s) in sort order.

205 Cannot create new records; import will overwrite existing data.

 continued

300 – 399

300 The file is locked or in use.

301 Record is in use by another user.

302 Script definitions are in use by another user.

303 Paper size is in use by another user.

304 Password definitions are in use by another user.

305 Relationship or value list definitions are locked by another user.

400 – 499

400 Find criteria is empty.

401 No records match the request.

402 Not a match field for a lookup.

403 Exceeding maximum record limit for demo.

404 Sort order is invalid.

405 Number of records specified exceeds number of records that can be omitted.

406 Replace/Reserialize criteria is invalid.

407 One or both key fields are missing (invalid relation).

408 Specified field has inappropriate data type for this operation.

409 Import order is invalid.

410 Export order is invalid.

411 Cannot perform delete because related records cannot be deleted.

412 Wrong version of FileMaker Pro used to recover file.

 continued

8 3 1

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x a – e r r o r C o d e s

500 – 599

500 Date value does not meet validation entry options.

501 Time value does not meet validation entry options.

502 Number value does not meet validation entry options.

503 Value in field does not meet range validation entry options.

504 Value in field does not meet unique value validation entry options.

505 Value in field failed existing value validation test.

506 Value in field is not a member value of the validation entry option value list.

507 Value in field failed calculation test of validation entry option.

508 Value in field failed query value test of validation entry option.

509 Field requires a valid value.

510 Related value is empty or unavailable.

600 –699

600 Print error has occurred.

601 Combined header and footer exceed one page .

602 Body doesn't fit on a page for current column setup .

603 Print connection lost.

700 – 799

700 File is of the wrong file type for import.

701 Data Access Manager can't find database extension file.

702 Data Access Manager was unable to open the session.

704 Data Access Manager failed when sending a query.

705 Data Access Manager failed when executing a query.

706 EPSF file has no preview image.

707 Graphic translator can not be found.

708 Can't import the file or need color computer.

709 QuickTime movie import failed.

710 Unable to update Quicktime file reference, read-only.

711 Import Translator can not be found.

712 XTND version is incompatible.

713 Couldn't initialize the XTND system.

714 Insufficient password privileges to allow the operation.

 continued

8 3 2

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x a – e r r o r C o d e s

800 – 899

800 Unable to create file on disk.

801 Unable to create temporary file on System disk.

802 Unable to open file .

803 File is single user or host cannot be found .

804 File cannot be opened as read-only in its current state .

805 File is damaged; use Recover command.

806 File cannot be opened with this version of FileMaker Pro.

807 File is not a FileMaker Pro file or is severely damaged .

808 Cannot open file because of damaged access privileges

809 Disk/volume is full.

810 Disk/volume is locked.

811 Temporary file cannot be opened as FileMaker Pro file.

812 Cannot open the file because it exceeds host capacity.

813 Record Synchronization error on network.

814 File(s) cannot be opened because maximum number is open.

815 Couldn't open lookup file.

816 Unable to convert file.

900 – 999

900 General spelling engine error.

901 Main spelling dictionary not installed.

902 Could not launch the Help system.

903 Command cannot be used in a shared file.

904 Command can only be used in a file hosted under FileMaker Server.

950 Adding repeating related fields is not supported.

951 An unexpected error occurred.

971 The user name is invalid.

972 The password is invalid.

973 The database is invalid.

974 Permission denied.

975 The field has restricted access.

976 Security is disabled.

977 Invalid client IP address (FileMaker Pro 5.x only).

978 The number of allowed guests has been exceeded (FileMaker Pro 5.x only).

JDBC Error Codes
All error codes specific to JDBC data sources are listed in Table 4: JDBC Error Codes. Additional error codes
may be reported if the JDBC data source encounters an operating system error. If Lasso receives one of these
error codes from a JDBC data source, it will be passed on to the site visitor.

Table 4: JDBC Error Codes

Error Code Description

-11000 Invalid Token Error. Invalid Lasso state token passed from Java.

-10999 Null Parameter Error. One of the required parameters was Null.

8 3 3

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x a – e r r o r C o d e s

B
Appendix B

Copyright Notice

Copyright © 1996-2007 LassoSoft, LLC.

This copyright notice applies to all source code, examples and documentation provided in the Lasso 8
Language Guide provided in the Lasso Professional 8 software product from LassoSoft, LLC.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of LassoSoft, LLC. shall not be used in advertising or otherwise
to promote the sale, use or other dealings in this Software without prior written authorization from
LassoSoft, LLC.

Lasso, Lasso Professional, Lasso Studio, Lasso Dynamic Markup Language, LDML, Lasso Service, Lasso
Connector, Lasso Web Data Engine, OmniPilot and OmniPilot Software are trademarks of LassoSoft, LLC.

8 3 4

L a s s o 8 . 5 L a n g u a g e g u i d e

C
Appendix C

Index

SymBolS
^

Regular expressions 351
-

Date Subtraction 384
Keyword prefix 81
Mathematical subtraction 365
String deletion 333
Symbol overloading 718

--
Symbol overloading 718

-=
Mathematical subtraction 366
String deletion 333

->
Member symbol 82

,
Tag delimiter 81

;
LassoScript delimiter 55, 59
Tag delimiter 82

:
Naming related fields 178
Tag delimiter 81

!
Boolean not 244

!=
Boolean inequality 244
Mathematical inequality 366
String inequality 334

?
Regular expressions 349
URL delimiter 82

?>
LassoScript delimiter 55

.
Regular expressions 347

‘
String delimiter 81

“
HTML delimiter 82

()
Regular expressions 349

[]
Regular expressions 347
Tag delimiter 81

{ }
Compound expressions 59, 582
Compound Expressions 82

Regular expressions 349
@ 232

References 230
*

Mathematical multiplication 365
Regular expressions 349
String repetition 333
Symbol overloading 718

*=
Mathematical multiplication 366
String repetition 333

/
Mathematical division 365
Symbol overloading 718
URL delimiter 82

//
LassoScript 55
LassoScript comment 82

/=
Mathematical division 366

\
Escape Character 497
Line Endings 323, 434
Regular Expressions 347

&
URL delimiter 82

&&
Boolean and 244

229, 693
URL delimiter 82

%
Mathematical modulus 365
Symbol overloading 718

%=
Mathematical modulus 366

+
Date Addition 384
Mathematical addition 365
Regular expressions 349
String concatenation 333
Symbol overloading 718

++
Symbol overloading 718

+=
String concatenation 333

<
HTML delimiter 82
Mathematical less than 366
String order 334

<=

8 3 5

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x C – i n d e x

Mathematical less than or equal 366
String order 334

=
Mathematical assignment 366
Parameter delimiter 81
URL delimiter 82
Variable assignment 223

==
Boolean equality 244
Mathematical equality 366
String equality 334

>
Mathematical greater than 366
String order 334

>=
Mathematical greater than or equal 366
String order 334

>>
String contains 333
Symbol overloading 717

|
Regular expressions 349

||
Boolean or 244
Logical expressions 80

$
Page variable 223
Regular expressions 351

<?LassoScript 55
[Net_WaitTimeout] 461
-Schema 195
-Table 109
#TOKEN# 596

A
Abbreviation 69
[Abort] 243
Absolute Paths 47
Accessing PDF File Information 491
Action Errors 257
Action.Lasso 42, 678

HTML forms 95
Paths 47

Action Methods 41
[Action_Param] 98

Database searches 119
Inline actions 94

Action Parameters 98
[Action_Params] 98

Displaying the current action parameters 99
HTML forms 94
Inline actions 94
Linking to data 135
Results schema 100

[Action_Statement] 91, 98
-Add 141

Requirements 143
Adding Content to Table Cells 503
Adding Records 143

Classic Lasso 142
FileMaker Pro 144
Security 142
Using an HTML form 145
Using an inline 144
Using a URL 145

[Admin_ChangeUser] 555

[Admin_CreateUser] 555
[Admin_GroupAssignUser] 555
[Admin_GroupListUsers] 555
[Admin_GroupRemoveUser] 555
Administration Tags 555
[Admin_LassoServicePath] 556
[Admin_ListGroups] 555
[Admin_RefreshSecurity] 556
[Admin_ReloadDatasource] 556
[Admin_UserListGroups] 556
AND 121

Performing an and search 121
[Array] 390
[Array] 214
[Array->Contains] 390
[Array->Difference] 391
[Array->Find] 391
[Array->FindPosition] 391
[Array->First] 391
[Array->ForEach] 391
[Array->Get] 240, 391
[Array->Insert] 391
[Array->InsertFirst] 391
[Array->InsertFrom] 391
[Array->InsertLast] 391
[Array->Intersection] 391
[Array->Iterator] 391
[Array->Join] 391
[Array->Last] 391
[Array->Merge] 391

Parameters 395
Array Parameters 98
[Array->Remove] 391
[Array->RemoveAll] 391
[Array->RemoveFirst] 391
[Array->RemoveLast] 391
[Array->Reserve] 391
[Array->Reverse] 391
[Array->ReverseIterator] 391
Arrays 74, 386, 389

Automatic string casting 332
Compressing an array 552
Converting a string to an array 344
Creating 390
Creating an empty array 390
Creating a pair array 397
Finding an element 396
Finding a pair within an array 397
Getting an element 392
Getting the size 392
Inserting an element 393
Iterating through an array 392
Joining into a string 394
Looping through an array 392
Members tags 390
Merging arrays 395
Pair arrays 397
Passing values into an inline 98
Removing an element 394
Setting an element 393
Sorting 398
Types 389

[Array->Second] 392
[Array->Size] 392
[Array->Size] 240
[Array->Sort] 392

8 3 6

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x C – i n d e x

[Array->SortWith] 392
[Array->Union] 392
Asynchronous Tags 698

Accessing variables 699
Calling custom tags 699
Creating background processes 699

Attachments 612
[Auth] 554
[Auth_Admin] 554
Authentication 32

B
Background Processes 699
Barcodes 507
Base 64 Encoding 248
Binary Formats 45
Binary Operations 369
Bit Operations 369
Blowfish 546

Seeds 547
Storing data securely 547

[Boolean] 214, 243
Data Type 243
False 243
Symbols 244
True 243

Boolean Operations 369
bw 120
Byte Order Mark 40
[Bytes] 214, 359
[Bytes->Append] 360
[Bytes->BeginsWith] 360
[Bytes->Contains] 360
[Bytes->EndsWith] 360
[Bytes->ExportString] 360
[Bytes->Find] 360
[Bytes->Get] 359
[Bytes->GetRange] 359
[Bytes->ImportString] 360
[Bytes->Position] 360
[Bytes->Remove] 360
[Bytes->RemoveLeading] 360
[Bytes->RemoveTrailing] 360
[Bytes->Replace] 360
[Bytes->SetPosition] 360
[Bytes->SetRange] 360
[Bytes->SetSize] 359
[Bytes->Size] 359
[Bytes->Split] 360
[Bytes->SwapBytes] 360
[Bytes->Trim] 360
Bytes Types 359

C
[Cache] 624
[Cache_Delete] 627
[Cache_Empty] 627
[Cache_Exists] 627
[Cache_Fetch] 627
[Cache_Store] 627
Caching 624
Callback Tags 711
[Case] 237
Casting

String 332

Cellular Phones 652
CGI 615
Character Encoding 40, 116, 141
character set 629
Character Sets 30
Check Boxes 166
[Checked] 163, 184

Displaying selected values 187
Cipher Tags 549
Classic Lasso

Adding records 142
Database searches 117
Deleting records 142
Tokens 96
Updating records 142

[Client_Address] 632
[Client_Browser] 632
[Client_ContentLength] 631
[Client_ContentType] 631
[Client_CookieList] 621
[Client_Cookies] 621
[Client_FormMethod] 631
[Client_GETArgs] 631
[Client_GETParams] 631
[Client_Headers] 631
[Client_IP] 632
[Client_Password] 631
[Client_POSTArgs] 631
[Client_PostParams] 701
[Client_POSTParams] 631
Client Tags 632
[Client_Type] 632
[Client_URL] 632
[Client_Username] 631
cn 120
Color

Creating a random color 372
Command Tags 66

Action tags 92
Email sending tags 591

Comments
LassoScript 54, 56

Comparators 388, 420
Complex Expressions 79
Compound Data Types 386

Common Tags 388
How to Select 387

Compound Expressions 582
Evaluation rules 59, 582
Running compound expressions 59, 582
Tag data type 579

[Compress] 551
Compression 551

Compressing an array 552
Compressing a string 551

Conditional Expressions 79
Symbols 80

Conditional Logic 233
Complex conditionals 235
If else conditionals 234
Iterations 241
Loops 238
Nested conditionals 235
Select statements 237
While loops 242

Configuration Tags 564

8 3 7

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x C – i n d e x

Connection Parameters 747, 781
Connection URL 747, 781
Container Fields 188
Container Tags 65

Defining 695
Encoding 695
LassoScript 54, 56
Link tags 132

[Content_Body] 563
[Content_Encoding] 563
[Content_Header] 563, 629
Content Type 629
[Content_Type] 29, 30, 629

Serving images and multimedia 454
Serving WML 653
XML data 480

Control Tags 553
[Cookie] 621
Cookies 31, 621

Checking for cookie support 624
Retrieving cookies 623
Setting cookies 621

[Cookie_Set] 621
Parameters 622

Creating Barcodes 507
Creating PDF Documents 487, 490
Creating Tables 502
Creating Text Content 492
Credit Cards

Checking whether a number is valid 588
Criteria 694
[Currency] 373
Custom Error Pages 258

Defining 261
Testing 261

Custom Errors
Using the [Protect] … [/Protect] tags 268

Custom Tags 683
Creating background processes 699
Criteria 694, 702
Defining asynchronous tags 698
Defining container tags 695
Defining process tags 687
Defining substitution tags 687
Encoding 688, 695
Error control 694
Getting a parameter value 691
Inspecting parameters 691
Libraries 703
Local variables 693
Named parameters 689, 691
Naming conventions 684
Optional parameters 689
Overloading 700
Page variables 693
Parameters 689
Parameters array 690
Parameters of the calling tag 692
Possible uses 684
Priority 701
Redefining 700
Referencing LassoApp Files 679
Remote procedure calls 696
Required parameters 689
Returning values 687, 688
Tag data type 579

Tags 685
Unnamed parameters 689, 692
Using global variables 229
Using references 232
XML-RPC 637, 649

Custom Types 705
Assignment tags 719
Automatic type conversions 713
Callback tags 711
Calling custom member tags 710
Comparison tags 716
Contains tag 717
[Define_Type] 707
Defining a >> callback 718
Defining an onAssign callback 720
Defining an onCompare callback 717
Defining an onConvert callback 713
Defining an onCreate callback 713, 715
Defining an onDestory callback 714
Defining an unknown tag callback 715
Defining a Type 707
Defining custom member tags 710
Destructor tags 714
Inheritance 721
Initialization tags 712
Instance variables 707
Libraries 722
Member tags 709
Naming conventions 705
Symbol overloading 715, 718, 720
Tag module code 772
Tag module walk-through 776
Tags 706
Unknown tags 714

D
-Database 109, 114
Database Actions 92

Action parameters 98
Displaying the current parameters 99
Error codes 824
FileMaker Pro error codes 830
Finding all records 93
HTML forms 94
Inline method 90
JDBC error codes 833
Lasso MySQL error codes 827
Response tags 95
Results 101
Searching for records 93
Tags 92
Tokens 96

DatabaseBrowser.LassoApp 673
Database Errors 257
[Database_FMContainer] 188
[Database_Name] 98
[Database_NameItem] 105
[Database_Names] 105
[Database_Names] … [/Database_Names]

Listing available databases 105
[Database_RealName] 109, 110
Databases

Listing available databases 105
Listing fields 106
Required fields 107

Database Schema

8 3 8

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x C – i n d e x

Showing 104
[Database_SchemaNameItem] 195
[Database_SchemaNames] 195
Database Searches 115

Classic Lasso 117
Complex queries 122
Detail links 138
Displaying data 127
Displaying results from a named inline 128
Displaying results out of order 129
Displaying search results 128
Error reporting 116
Field operators 120
Finding all records 125
Finding random records 126
HTML forms 119
Limiting returned fields 125
Linking to data 129
Logical operators 121
Manipulating the found set 123
Navigation links 135
Operators 119
Performing a logical not search 122
Random sorting 127
Results 123
Returning part of a found set 124
Returning unique field values 126
Searching records 118
Security 117
Security command tags 117
Sorting links 137
Sorting results 123, 124
Specifying field operators 120
Specifying username and password 117
Using a logical and operator 121
Using a logical or operator 121
Using inline tags 118

[Database_TableNameItem] 105
[Database_TableNames] 105
[Database_TableNames] … [/Database_TableNames]

Listing available tables 106
Data Output 207
Data Source Connector Code 782
Data Source Connector Operation 747, 781
Data Source Connector Tutorial 748, 782
Data Source Connector Walk-Through 790
Data Source Host 747, 781
Data Type

Boolean 243
Data Type Operation 771
Data Types 213

Casting 215, 216
Custom member tags 709
Decimal 364
Integer 363
Member tags 709
Returning the type of a variable 562
XML 466
XML-RPC 636

Data Type Tutorial 771
[Date] 214, 376
[Date_Add] 382
[Date->Add] 383
Date Data Type 374
[Date->Day] 380
[Date->DayofWeek] 380

[Date->DayofYear] 380
[Date_Difference] 382
[Date->Difference] 383
[Date->DST] 380
[Date_Format] 376
[Date->Format] 379
Date Format Symbols 377, 379
[Date_GetLocalTimeZone] 376
[Date->GMT] 380
[Date_GMTToLocal] 376
[Date->Hour] 380
[Date_LocalToGMT] 376
Date Math Symbols 384
Date Math Tags 382, 383
[Date_Maximum] 376
[Date->Millisecond] 380
[Date_Minimum] 376
[Date->Minute] 380
[Date->Month] 380
[Date_Msec] 376
Dates 73, 374

Accessors 379
Formatting 377
Math Operations 382, 384

[Date->Second] 380
[Date->Set] 379
[Date_SetFormat] 376
[Date->SetFormat] 379
[Date_Subtract] 382
[Date->Subtract] 383
Date Tags 375
[Date->Time] 380
[Date->Week] 380
[Date->Year] 380
Daylight Savings Time 374, 382
[Decimal] 214, 364
Decimals 73, 364

Assignment symbols 366
Automatic string casting 332
Casting 364
Comparing values 367
Comparison symbols 366
Formatting 367
Formatting as currency 368
Member tags 367
Random numbers 371
Rounding values 371
Scientific notation 367
Substitution tags 370
Trignometry 372
Using assignment symbols 366
Using mathematical symbols 365

[Decimal->SetFormat] 367
Parameters 367

[Decode_Base64] 249
[Decode_BHeader] 249
[Decode_Hex] 249
[Decode_HTML] 249, 250
[Decode_QHeader] 250
[Decode_QuotedPrintable] 250
[Decode_URL] 250
[Decompress] 551
[Define_Tag] 685, 706

Asynchronous tags 699
Container tags 695
Criteria 694, 702

8 3 9

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x C – i n d e x

Defining custom member tags 710
Parameters 686
Priority 701
RPC 696
XML-RPC 637, 649

[Define_Type] 706
Defining a type 707

-Delete 141
Requirements 150

Deleting Records 150
Classic Lasso 142
Deleting several records 151
Security 142
Using an inline tag 151

Delimiters 81
LassoScript 55

[Deserialize] 550
Detail Links 129

Inline Lasso 138
Displaying data 127
-Distinct 123, 160
Documentation 25
Documentation Conventions 26
Document Type Definition 465, 466
Domain Name Server 587
Downloading Files 619, 620
Drawing Graphics Direct to PDF Pages 506
DTD 466
-Duplicate 141

Requirements 152
Duplicating Records 152

Using an inline tag 153
[Duration] 381
[Duration] 214
Duration Data Type 374
[Duration->Day] 381
[Duration->Hour] 381
Duration Math Tags 383
[Duration->Minute] 381
[Duration->Month] 381
Durations 74, 374

Math Operations 382, 384
[Duration->Second] 381
Duration Tags 380
[Duration->Week] 381
[Duration->Year] 381

E
[Else] 234

Complex conditionals 235
Email 590

Attachments 595, 612
Command tags 591
Composing 599
Downloading 604
HTML 593
Multiple recipients 593
Parsing 607
Examples 609
POP 604
Queuing 599, 600
Sending 591
Sending a message 592
SMTP 602
Structure 607

[Email_Batch] 600

[Email_Compose] 600
[Email_Compose->AddAttachment] 600
[Email_Compose->AddHTMLPart] 600
[Email_Compose->AddPart] 600
[Email_Compose->AddTextPart] 600
[Email_Compose->Data] 600
[Email_Compose->From] 600
[Email_Compose->Recipients] 600
[Email_Extract] 614
[Email_FindEmails] 614
[Email_Immediate] 600
[Email_Merge] 601
[Email_MXLookup] 602
[Email_Parse] 609

Attachments 612
[Email_Parse->Body] 609
[Email_Parse->Data] 609
[Email_Parse->Get] 609
[Email_Parse->Header] 609
[Email_Parse->Headers] 609
[Email_Parse->Mode] 609
[Email_Parse->RawHeaders] 609
[Email_Parse->Recipients] 609
[Email_Parse->Size] 609
[Email_POP] 605

Attachments 612
[Email_POP->Authorize] 605
[Email_POP->Cancel] 605
[Email_POP->Close] 605
[Email_POP->Delete] 605
[Email_POP->Get] 605
[Email_POP->Headers] 605
[Email_POP->NOOP] 605
[Email_POP->Retrieve] 605
[Email_POP->Size] 605
[Email_POP->UniqueID] 605
[Email_Queue] 600
[Email_Result] 599
[Email_SafeEmail] 614
[Email_Send] 591

Parameters 592, 598
[Email_SMTP] 602
[Email_SMTP->Close] 602
[Email_SMTP->Command] 602
[Email_SMTP->Open] 602
[Email_SMTP->Send] 602
[Email_Status] 599
Email Tags 280
[Email_Token] 596
[Email_TranslateBreaksToCRLF] 614
[Encode_Base64] 250
[Encode_Break] 250

HTML encoding 247
-EncodeBreak 248

HTML encoding 247
[Encode_CRC32] 250
[Encode_HTML] 250

HTML encoding 247
-EncodeHTML 248

Default encoding 246
HTML encoding 247

[Encode_HTMlToXML] 250
-EncodeNone 248
[Encode_QHeader] 250
[Encode_QuotedPrintable] 250
[Encode_Set]

8 4 0

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x C – i n d e x

Encoding for WML 654
Setting encoding within a LassoScript 54, 57

[Encode_Set] … [/Encode_Set] 249
Setting default encoding 249

-EncodeSmart 248
HTML encoding 247

[Encode_Smart] 250
HTML encoding 247

[Encode_SQL] 110, 250
[Encode_SQL92] 110, 250
[Encode_StrictURL] 250

URL encoding 248
-EncodeStrictURL 248

URL encoding 248
[Encode_URL] 250

URL encoding 247
-EncodeURL 248

URL encoding 247
[Encode_XML] 250

XML encoding 247
-EncodeXML 248

Encoding for WML 654
XML encoding 247

Encoding 246
Base 64 encoding 248
Container tags 695
Controls 249
Custom tags 688
Default encoding 246
HTML 247
HTML encoding 247
Keywords 248
LassoScripts 247
Rules for encoding 246
Substitution tags 246
Tags 249
URL encoding 247
Using encoding tags 250
WML 654
XML 480

Encoding Keywords 71
Encryption 546

BlowFish 546
Cipher Tags 549
MD5 hash function 546
Storing and checking passwords 548
Storing data securely 547

ENUM MySQL Data Type 163
EQ 120
Error Codes 823

FileMaker Pro 830
JDBC 833
Lasso MySQL 827

Error Control 211, 257, 265
Checking for an error 265
Displaying the current error message 263
Executing code if an error is encountered 266
Fail tags 267
Handle tags 266
Outputting debugging messages 266
Post-processing 266
Protecting a portion of a page 268
Protect tags 267
Reporting an error 267
Response tags 262
Setting the current error message 263

Standard error tags 264
Tags 262, 265

[Error_CurrentError] 262
Error Messages 258

Built-In 258
Custom 260

[Error_NoRecordsFound] 265
Error Pages 262

Custom 260
Error Reporting 205

Adding records 142
Checking for an error 116
Database searches 116
Deleting records 142
Displaying the current error 116
Updating records 142

Errors
Types 257

[Error_SetErrorCode] 262
[Error_SetErrorMessage] 262
Event Administration 558
Events 577

Waiting for a signal 577
[Event_Schedule] 558

Parameters 558
Scheduled actions 43

Event Tags 558
EW 120
Example PDF Files 509
Examples

[Ex_Background] 700
[Ex_Bold] 694
[Ex_Concatenate] 692
[Ex_Echo] 691
[Ex_EmailAddress] 687
[Ex_Font] 695
[Ex_Fortune] 647, 696, 698
[Ex_Greeting] 688, 691
[Ex_Link] 695
[Ex_Note] 689, 690
[Ex_Print] 702
[Ex_SendMail] 687, 699
[Ex_Sum] 229, 693
[Ex_TopStories] 697
[Ex_UnnamedParams] 692
[Form_Param] 701

-Exec 114
Expressions 75
Extensible Markup Language 466
Extensible Stylesheet Language 466

F
False 243
[Field] 127, 178

Database searches 119
Displaying results out of order 129
Displaying search results 128
Returning related fields 178

[Field_Name] 105, 240
Listing fields 106
Parameters 106

[Field_Names] 102, 105
Field Operators 120
Fields

Required fields 107
[File] 435

8 4 1

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x C – i n d e x

[File_Chmod] 431
[File->Close] 436
[File_Copy] 431
[File_Create] 431
[File_CreationDate] 431
[File_CurrentError] 431
[File_Delete] 431
[File->Delete] 436
[File_Exists] 431
[File->Get] 436
[File_GetLineCount] 431
[File->GetPosition] 436
[File_GetSize] 431
[File_IsDirectory] 431
[File->IsOpen] 437
[File_ListDirectory] 431
FileMaker

Container Fields 188
FileMaker Pro 168

Adding a record through a portal 180
Adding a record with repeating fields 182
Adding records 144
Checking for databases 175
Compatibility tips 171
Deleting a record through a portal 181
Deleting repeating field values 183
Displaying a value list 185
Displaying data 178
Duplicating a record 152
Error codes 830
Executing a script 190
Field operators 120
Key fields 176
Listing databases 175
Logical operators 121
Performance tips 170
Portals 179
Record IDs 176
Referencing a record by ID 176
Related fields 178
Repeating fields 182
Returning a random record 127
Returning the current record ID 176
Returning values from a repeating field 182
Scripts 189
Sorting records 177
Terminology 169
Updating a record within a portal 180
Updating a record with repeating fields 183
Value lists 184
XML templates 481

FileMaker Server Advanced
-LayoutResponse 96, 171
-NoValueLists 123, 171, 184

[File_ModDate] 431
[File_Move] 431
[File->MoveTo] 436
[File->Name] 436
[File->Open] 436
[File->Path] 436
File Permissions 443
[File_ProbeEOL] 431
[File_Read] 431
[File->Read] 436
[File_ReadLine] 432
[File_Rename] 432

Files 428
Error codes 826
Management 45
Paths 29, 428
Security 430
Tags 428

[File_Serve] 440
[File->SetMode] 436
[File->SetPosition] 436
[File_SetSize] 432
[File->SetSize] 436
[File->Size] 436
[File_Stream] 440
[File_StreamCopy] 431
File Suffixes 211, 430
File Uploads 438
[File_Uploads] 439
[File_Write] 432
[File->Write] 436
-FindAll 115

Inline action 93
Requirements 125

-FMScript 189
-FMScriptPre 189
-FMScriptPreSort 189
Format Files 38, 204

Action methods 41
Character Encoding 40
Editing 40
File management 45
Functional types 40
HTML form actions 42
Inline actions 42
Naming 40
Output formats 44
Post-processing 266
Scheduled actions 43
Securing 44
Specificing paths 46
Startup actions 43
Storage types 39
Unicode 40
URL actions 41

[Form_Param]
Redefining 701

Form Parameters 219
Forms 219
Form Tags

Preparing LassoApps 678
[Found_Count]

Displaying the current found count 102
FT 120, 159
FTP 619
[FTP_GetFile] 620
[FTP_GetListing] 620
[FTP_PutFile] 620
Full-Text Search 159

G
GET Method 34
GIF

Serving image files 454
[Global] 226
[Global_Defined] 226
[Global_Remove] 226
[Globals] 226

8 4 2

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x C – i n d e x

Global Variables 226
Defining at startup 226
Overriding a value 227
Retrieving a value 227
Setting a value 227
Using within custom tags 229

GroupAdmin.LassoApp 673
-GroupBy 160
GT 120
GTE 120

H
[Handle] … [/Handle] 266
[Header] … [/Header] 629
Header Tags 629
Hexadecimals 369

Creating a random color 372
Host Name 28

Looking up an IP address 587
HTML 466

Email 593
Encoding 247
Output formats 44

[HTML_Comment] 207
HTML Delimiters 82
HTML Format Files 39
HTML Forms 34

Actions 42
Adding a record 145
Creating a pop-up menu 185
Creating radio buttons 186
Executing a FileMaker Pro script 190
Format files 95
GET method 34
Inline actions 93
Input syntax 58
POST method 35
Response tags 95
Searching databases 119
Setting values 96
Updating a record 147

HTTP 619
HTTP Content and Controls 615
HTTP Delimiters 82
[HTTP_GetFile] 619
HTTP Requests 29
HTTP Responses 29
HTTPS 615, 617
HyperText Markup Language 466

I
[If] 234

Complex conditionals 235
Error control 235
LassoScript 235
Nested conditionals 235

Illegal Characters 83
[Image] 443, 444
[Image->AddComment] 446
[Image->Annotate] 450
[Image->Blur] 449
[Image->Comments] 445
[Image->Composite] 451
[Image->Contrast] 448
[Image->Crop] 447

[Image->Depth] 445
[Image->Describe] 445
[Image->Enhance] 449
[Image->File] 445
[Image->FlipH] 447
[Image->FlipV] 447
[Image->Format] 445
Image Formats 443
image/gif 454
[Image->Height] 445
image/jpeg 454
ImageMagick 442
[Image->Modulate] 448
[Image->Pixel] 445
[Image->ResolutionH] 445
[Image->ResolutionV] 445
[Image->Rotate] 447
Images 442

Generating the path to a file 453
MIME types 454
Serving an image file 454

[Image->Scale] 447
[Image->Sharpen] 449
Image Tags

Preparing LassoApps 678
[Image->Width] 445
[Include]

Preparing LassoApps 678
[Include] 212
[Include_CurrentPath] 631
[Include_Once] 212
Include Paths 211
[Include_Raw]

Serving images and multimedia 454
[Include_Raw] 212
Includes 210
[Include_URL] 616

Parameters 616
Include URLs 615
Index 835
Inheritance 721
[Inline] 430
[Inline] … [/Inline] 90

Action parameters 98
Actions 42
Adding a record 144
Array parameters 98
Checking for an error 265
Database actions 90
Deleting a record 151
Deleting several records 151
Displaying results from a named inline 128
Displaying search results 128
Duplicating a record 153
Executing a FileMaker Pro script 190
-FindAll action 93
Finding all records 125
HTML forms 94
Linking to data 134
Nesting tags 97
Passing array parameters 98
-Search action 93
Searching databases 118
Specifying field operators 120
Specifying username and password 117
Updating a record 147

8 4 3

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x C – i n d e x

Updating several records 149
Inline Lasso 90

Detail links 138
Navigation links 135
Sorting links 137

Inline Log Level 90
Inline Name 90
-InlineName

Displaying results 128
Inline Tag 90
Installation Problems 258
[Integer] 363
Integer

Substitution tags 370
[Integer] 214
[Integer->BitAnd] 368
[Integer->BitClear] 368
[Integer->BitFlip] 368
[Integer->BitNot] 368
[Integer->BitOr] 368
[Integer->BitSet] 368
[Integer->BitShiftLeft] 368
[Integer->BitShiftRight] 368
[Integer->BitTest] 368
[Integer->BitXOr] 368
Integers 72, 363

Assignment symbols 366
Automatic string casting 332
Bit operations 369
Casting to integer 364
Comparing values 367
Comparison symbols 366
Formatting 368
Formatting as hexadecimals 369
Hexadecimal output 369
Member tags 368
Random numbers 371
Rounding numbers 371
Using assignment symbols 366
Using mathematical symbols 365

[Integer->SetFormat] 368
Parameters 369

IP Address
Looking up a host name 587

ISO 8859-1 294
ISO-8859-1 29, 40, 116, 142, 279
[Iterate]

Implementing for custom types 709
[Iterate] … [/Iterate] 241, 242

Array elements 242
Iterating through a map 402, 418
Iterating through an array 392
String characters 242

Iterators 389, 423
iText 484

J
[Java_Bean] 515
JavaBeans 514
JavaScript

Not processing square brackets 561
JDBC 192

Certification 194
Data sources 192
Error codes 833
Tips for usage 193

JDBC Schema Tags 194
JPEG

Serving image files 454

K
-KeyField

Using with FileMaker Pro 144
Using with MySQL 144

[KeyField_Name] 98
[KeyField_Value] 99

Using with FileMaker Pro 147
Using with MySQL 147

Keywords
Encoding 248

l
Lasso

Converting to LassoScript 57
Format files 39
Tag categories 67
Tag types 62

Lasso 8 Documentation 25
Lasso 8 Reference 84

Components 84
Navigation 85
Sections of the interface 85

Lasso 8 Tag Language 61
Lasso Administration 679, 747, 781
LassoApp

Removing all LassoApps from the cache 675
[LassoApp_Create]

Building LassoApps 680
Parameters 680

[LassoApp_Link] 675
Preparing <form> Tags 678
Preparing Tags 678
Preparing [Include] Tags 678
Preparing [Library] Tags 678
Preparing Links 677
Preparing [Link_…] Tags 678

LassoApps 672
Administration 674
Auto-Building databases 681
Benefits 672
Building 679
Cache 674
Compiling 679
Database Action Responses 676
DatabaseBrowser.LassoApp 673
Defaults 673
Disabling 674
Enabling 674
GroupAdmin.LassoApp 673
Lasso Administration 674
Lasso Security 681
Lasso Startup 682
Lasso Startup folder 677
LDMLReference.LassoApp 674
Naming conventions 681
Preloading 675
Preparing links 677
Preparing solutions 677
Referencing files within a LassoApp 676
Removing a LassoApp from the cache 674
RPC.LassoApp 646, 674, 696

8 4 4

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x C – i n d e x

Run-time errors 681
Serving 675
Startup.LassoApp 674
Tags 673
Tips and techniques 681
Uses 673
Using the LassoApp Builder 679
Using the [LassoApp_Create] tag 680

[Lasso_CurrentAction] 99
[Lasso_DatasourceIsFileMaker] 564
[Lasso_DataSourceIsFileMaker] 175
[Lasso_DatasourceIsMySQL] 564
[Lasso_DatasourceIsODBC] 564
[Lasso_DatasourceIsOpenBase] 564
[Lasso_DatasourceIsOracle] 565
[Lasso_DatasourceIsPostgreSQL] 565
[Lasso_DatasourceIsSpotlight] 565
[Lasso_DatasourceIsSQLite] 565
[Lasso_DatasourceIsSQLServer] 565
[Lasso_DatasourceModuleName] 565
Lasso_Internal Database 747, 781
Lasso Java API

Debugging 764
Getting started 762
Requirements 762

Lasso MySQL
Error codes 827
Field operators 120
Logical operators 121
Random sorting 127
Returning unique field values 126
SQL encoding 248

[Lasso_Parser] 583
Lasso Parser Token Types 585
Lasso Parser Type 584
LassoScript

Compound expressions 59, 582
LassoScripts

Comments 54, 56
Container tags 54, 56
Converting from square bracket syntax 57
Delimiters 55
Encoding 247
Setting default encoding 54, 57, 249
Single tag 56
Suppressing output 54, 57

Lasso Security
Databases and tables 682
Groups and tables 682
LassoApps 681
Tags 681

Lasso Service 45
Paths 48

Lasso Startup
Defining global variables 226

LassoStartup 699, 701, 704
Lasso Startup Folder 677
[Lasso_TagExists] 565
[Lasso_TagModuleName] 565
[Lasso_UniqueID] 588
[Lasso_Version] 565
Lasso Web Server Connector 45
Latin-1 30, 40, 116, 142, 294
-LayoutResponse 96, 171
[LDML] 583
LDML 205

LDMLReference.LassoApp 674
Leap Years 374
libCURL 616, 619
Libraries 703, 722
[Library]

Preparing LassoApps 678
[Library] 212
Library Files 41, 210
[Library_Once] 212
Line Endings 434
[Link_CurrentAction] … [/Link_CurrentAction] 133

Linking to the current record 138
[Link_CurrentActionURL] 132
[Link_Detail] … [/Link_Detail] 133

Linking to the current record 138
[Link_DetailURL] 132
[Link_FirstGroup] … [/Link_FirstGroup] 133

Creating sort links 137
[Link_FirstGroupURL] 132
[Link_FirstRecord] … [/Link_FirstRecord] 133
[Link_FirstRecordURL] 132
Linking to Data 129

Container tags 132
Tag parameters 130
URL tags 131

Linking to PDF Files 512
[Link_LastGroup] … [/Link_LastGroup] 133
[Link_LastGroupURL] 132
[Link_LastRecord] … [/Link_LastRecord] 133
[Link_LastRecordURL] 132
[Link_NextGroup] … [/Link_NextGroup] 133

Creating next links 135
[Link_NextGroupURL] 132
[Link_NextRecord] … [/Link_NextRecord] 133
[Link_NextRecordURL] 132
[Link_PrevGroup] … [/Link_PrevGroup] 133

Creating previous links 135
[Link_PrevGroupURL] 132
[Link_PrevRecord] … [/Link_PrevRecord] 133
[Link_PrevRecordURL] 132
Link Tags

Preparing LassoApps 678
[List] 398
List Array 389
[List->Contains] 399
[List->Difference] 399
[List->Find] 399
[List->First] 399
[List->ForEach] 399
[List->Insert] 399
[List->InsertFirst] 399
[List->InsertFrom] 399
Lists 386, 398

Members tags 399
Literals 76
LJAPI 6 vs. LCAPI 6 761
LJAPI Class Reference 794
LJAPI Interface Reference 794
[Local] 229, 685, 693, 706

symbol 229, 693
[Local_Defined] 685, 706
[Locale_Format] 373
[Local_Remove] 686
[Locals] 686, 706
Local Variables 693

symbol 229, 693

8 4 5

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x C – i n d e x

Lock
Controlling access to a resource 574
Thread lock 574

[Log] 543
[Log_Always] 542
[Log_Critical] 542
[Log_Deprecated] 542
Log_Destination_Console 544
Log_Destination_Database 544
Log_Destination_File 544
[Log_Detail] 542
Logging 541

Changing log destination preferences 544
Destination codes 544
Message level codes 544
Preferences 543
Resetting log destination preferences 544

Logical Errors 258
Logical Expressions 80

Symbols 80
Logical Operators 121

Performing an and search 121
Performing an or search 121
Performing a not search 122

Log_Level_Critical 544
Log_Level_Deprecated 544
Log_Level_Detail 544
Log_Level_SQL 544
Log_Level_Warning 544
[Log_SetDestination] 544
[Log_SQL] 542
[Log_Warning] 542
[Loop] … [/Loop] 239, 240

Array elements 240
Display field names 240
Looping through a map 403, 418
Looping through an array 392
Parameters 239

[Loop_Abort] 239, 240, 243
[Loop_Continue] 240
[Loop_Count] 239, 240, 243
Lower Case

Strings 338
LT 120
LTE 120

m
Mac OS X File Permissions 431
[Map] 401
[Map] 214
Maps 75, 387, 401

Automatic string casting 332
Comparison to pair arrays 404
Creating a map 401, 417
Displaying an element 404, 419
Getting a value 402, 418
Inserting an element 403, 419
Iterating through a map 402, 418
Looping through a map 403, 418
Member tags 402
Removing an element 403, 419

Matchers 389, 421
Math 363

Addition 366
Expressions 78
Scientific notation 367

Symbols 78, 365
Trigonometry 372

[Math_Abs] 370
[Math_ACos] 372
[Math_Add] 370
[Math_ASin] 372
[Math_ATan] 372
[Math_ATan2] 372
[Math_Ceil] 370

Rounding numbers 371
[Math_ConvertEuro] 370
[Math_Cos] 372
[Math_Div] 370
[Math_Exp] 372
[Math_Floor] 370

Rounding numbers 371
[Math_Ln] 372
[Math_Log10] 372
[Math_Max] 370
[Math_Min] 370
[Math_Mod] 370
[Math_Mult] 370
[Math_Pow] 372
[Math_Random] 370

Parameters 371
[Math_RInt] 370

Rounding numbers 371
[Math_Roman] 370
[Math_Round] 370

Rounding numbers 371
[Math_Sin] 372
[Math_Sqrt] 372
[Math_Sub] 370
[Math_Tan] 372
-MaxRecords 109, 123
[MaxRecords_Value] 99
MD5 546
MD5 Hash Function

Storing and checking passwords 548
Member Tags 64, 76, 218, 709

Built-in 709
Custom 709
Decimal tags 367
Integer tags 368

Member Tag Types 219
Memory Session Driver 280
MIME Type

Image files 454
Miscellaneous Tags 587
Multimedia 442

Generating the path to a file 453
MIME types 454
Serving a multimedia file 455

MySQL
Adding and updating records 162
Error codes 827
Field operators 120
Logical operators 121
Random sorting 127
Returning unique field values 126
Search command tags 160
Search field operators 158
Searching records 158
Security 155
SQL encoding 248
Tips for usage 155

8 4 6

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x C – i n d e x

MySQL 4.1 Character Sets 279

N
Named Inlines

Displaying results 128
Name Server 587
[Namespace_Import] 539
[Namespace_Load] 539
Namespaces 537

Scope 537
Search Order 537
Third-Party 538

[Namespace_Unload] 539
[Namespace_Using] 539
Naming Conventions

Custom tags 684, 705
RPC tags 684

Navigation Links 129
Inline Lasso 135

NEQ 120
Nesting Tags 97
[Net->Accept] 461
[Net->Bind] 462, 463
[Net->Close] 460, 462
[Net->Connect] 459, 460
[Net_ConnectInProgress] 459
[Net_ConnectOK] 459
[Net->Listen] 462
[Net->LocalAddress] 458
[Net->Read] 459, 460, 462
[Net->ReadFrom] 463
[Net->ReadString] 459, 460, 462
[Net->RemoteAddress] 458
[Net->SetBlocking] 458
[Net->SetEncoding] 458
[Net->SetType] 458
[Net_TypeSSL] 458
[Net_TypeTCP] 458
[Net_TypeUDP] 458
[Net->Wait] 460
[Net_WaitWrite] 461
[Net->Write] 459, 460, 462
[Net->WriteTo] 463
[NoProcess] … [/NoProcess] 560
NOT 121

Performing a not search 122
-Nothing 98
-NoValueLists 123, 171, 184
NRX 120, 159
[NSLookup] 587
[Null]

Member tags 709
Null

Data type 562
Value 161, 162

[Null] 562
[Null->DetachReference] 232, 709

Detaching a reference 231
[Null->DetachReference] 562
[Null->FreezeType] 709
[Null->FreezeType] 562
[Null->FreezeValue] 709
[Null->FreezeValue] 562
[Null->FullType] 709
[Null->Invoke] 709
[Null->IsA] 709

[Null->onConvert] 712
[Null->onCreate] 712
[Null->onDeserialize] 712
[Null->onDestroy] 712
[Null->onSerialize] 712
[Null->Parent] 709
[Null->Properties] 709
[Null->Properties]

Finding a tag 579
[Null->Properties] 562
[Null->RefCount] 232
[Null->RefCount] 709
[Null->Serialize] 709

Compressing an array 552
[Null->Serialize] 562
[Null->Type] 709
[Null->Type] 213, 562
[Null->_UnknownTag] 712
[Null->Unserialize] 709
[Null->UnSerialize] 562

o
On-Demand Libraries 538
-OpBegin

Complex queries 122
-OpEnd

Complex queries 122
OpenSSL 616
Operating System Errors 258
-Operator 119
-OperatorBegin 119
-OperatorEnd 119
-OperatorLogical 119

Performing an and search 121, 122
[Operator_LogicalValue] 99
Operators

Database searches 119
Field operators 120
Logical operators 121

[Option] 163, 184
Creating a pop-up menu 185

OR 121
Performing an or search 121

[Output] 207
Automatic string casting 332

Output Formats 44
[Output_None] 207

Suppressing LassoScript output 57
Output Suppressing 207
Outputting Values 207

P
Page Variables 563, 693
[Pair] 214
Pair Arrays 389, 397

Comparison to maps 404
Pairs 387, 404

Automatic string casting 332
Creating a pair 404
Displaying an element 405
Getting an element 405
Member tags 405
Setting an element 405

Parameters
Array 690

8 4 7

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x C – i n d e x

Array objects 98
Inspecting 691
Named 689
Optional 689
Required 689
Unnamed 689, 692

[Params] 686, 706
Parameters array 690

[Params_Up] 686, 691
Parameters from calling tag 692

[Parent] 721
-Password 117
Paths

Absolute 47
Action.Lasso 47
Lasso Service 48
Relative 47
Specifying 46

PDF 484
Output Formats 45

[PDF_Barcode] 508
[PDF_Doc] 444, 487
[PDF_Doc->AddChapter] 489
[PDF_Doc->AddCheckBox] 497
[PDF_Doc->AddComboBox] 498
[PDF_Doc->AddHiddenField] 498
[PDF_Doc->AddList] 496
[PDF_Doc->AddPage] 489
[PDF_Doc->AddPasswordField] 497
[PDF_Doc->AddRadioButton] 498
[PDF_Doc->AddRadioGroup] 498
[PDF_Doc->AddResetButton] 498
[PDF_Doc->AddSelectList] 498
[PDF_Doc->AddSubmitButton] 498
[PDF_Doc->AddText] 489, 494
[PDF_Doc->AddTextArea] 497
[PDF_Doc->AddTextField] 497
[PDF_Doc->Circle] 506
[PDF_Doc->Close] 492
[PDF_Doc->CurveTo] 506
[PDF_Doc->DrawArc] 506
[PDF_Doc->DrawText] 495
[PDF_Doc->GetColor] 491
[PDF_Doc->GetHeaders] 491
[PDF_Doc->GetMargins] 491
[PDF_Doc->GetPageNumber] 489
[PDF_Doc->GetSize] 491
[PDF_Doc->InsertPage] 490
[PDF_Doc->Line] 506
[PDF_Doc->Rect] 506
[PDF_Doc->SetColor] 506
[PDF_Doc->SetFont] 491
[PDF_Doc->SetLineWidth] 506
[PDF_Doc->SetPageNumber] 489
[PDF_Font] 492
[PDF_Font->GetColor] 493
[PDF_Font->GetEncoding] 493
[PDF_Font->GetFace] 493
[PDF_Font->GetPSFontName] 493
[PDF_Font->GetSize] 493
[PDF_Font->GetFullFontName] 493
[PDF_Font->GetSupportedEncodings 493
[PDF_Font->IsTrueType] 493
[PDF_Font->SetColor] 493
[PDF_Font->SetEncoding] 493
[PDF_Font->SetFace] 493

[PDF_Font->SetSize] 493
[PDF_Font->SetUnderline] 493
[PDF_Image] 505
PDF, Introduction to Creating PDF Files 443, 484
[PDF_List->Add] 496
[PDF_Read] 485
[PDF_Serve] 513
[PDF_Table] 502
[PDF_Table->GetAbsWidth] 502
[PDF_Table->GetColumnCount] 502
[PDF_Table->GetRowCount] 502
[PDF_Table->Insert] 503
[Percent] 373
Performance Tips

FileMaker Pro 170
Personal Digital Assistants 652
Pipes 577

Processing messages 578
POP 604

Examples 606
Methodology 605

Pop-Up Menu 166
Portable Document Format 484
[Portal] … [/Portal] 178

Returning portal values 179
Portals

Adding a record through a portal 180
Deleting a record through a portal 181
FileMaker Pro 179
Updating a record within a portal 180

Port Number 28
Post-Lasso 41
POST Method 35
Post-Processing 266
Pre-Lasso 40
-Prepare 114
Priority Queue 387, 405

Member Tags 406
[PriorityQueue] 406
[Private] 706
[Process] 560

Processing code stored in a field 561
Processing code stored in a variable 561

Process Tags 63, 560
Defining 687

Programming Fundamentals 204
[Protect] … [/Protect] 267
Protocol 28

Q
[Queue] 409
Queue 387, 408

Member Tags 409

R
-Random 115

Requirements 126
Random Numbers 371
Read/Write Lock 576

Controlling access to a resource 576
Record ID 176
[RecordID_Value] 176
[Records] … [/Records] 127

Database actions 91
Database searches 119

8 4 8

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x C – i n d e x

Displaying results from a named inline 128
Displaying search results 128

[Records_Array] 101, 102
[Records_Map] 101, 103
[Redirect_URL] 618
[Reference] 230, 232
References 230

Detaching a reference 231
Types 231
Using with custom tags 232

[Referrer] 133
[Referrer_URL] 132
Regular Expressions 159

Combination symbols 349, 351
Finding expressions 357
Matching symbols 347
Replacement symbols 350
Replacing expressions 356

Relative Paths 47
Remote Procedure Call 466
Remote Procedure Calls 696

Naming conventions 684
[Repeating] … [/Repeating] 178

Returning values from a repeating field 182
Repeating Fields 182

Adding a record 182
Deleting values 183
Returning values 182
Updatinga a record 183

[Repeating_ValueItem] 178
[Repetition] 240

Two column display 241
Request Tags 631
[Required_Field] 105

Parameters 107
-Response

Action.Lasso 95
-ResponseAnyError 262
[Response_FileExists] 631
[Response_FilePath] 99, 631
-ResponseLassoApp 676
[Response_LocalPath] 631
[Response_Path] 631
[Response_Realm] 631
Response Tags 95

Command tags 96
Error control 262

Results
Database searches 123

[Return] 686
Returning Values 687, 688

-ReturnField 123
Limiting returned fields 125

RPC 466
RPC.LassoApp 646, 674, 696
[Run_Children] 686

Defining container tags 695
RX 120, 159

S
Scheduled Events 43
Scheduling Events 558
Schema 465, 466
[Schema_Name] 195
[Scientific] 373
Scientific Notation 367

Scope 537
Scripts

Executing a Script 190
FileMaker Pro 189

-Search 115
Inline Action 93
Requirements 118

[Search_Arguments] 99
[Search_Arguments] … [/Search_Arguments]

Displaying search arguments 101
[Search_FieldItem] 99
[Search_OperatorItem] 99
[Search_ValueItem] 99
Security

Adding records 142
Command tags 117
Database searches 117
Deleting records 142
Duplicating records 142
Error codes 825
Violations 258

[Select] 237
Data type 237

[Selected] 163, 184
Displaying selected values 186

[Self] 706, 707
[Self->Parent] 706
Semaphore 575

Controlling access to a resource 575
[Serialize] 550
Series 387
[Server_Port] 633
Server Push 628
[Server_Push] 628
[Server_SiteIsRunning] 569
[Server_SiteStart] 569
[Server_SiteStop] 569
Server Tags 632
Serving PDF Files 512
Serving PDF Files to Client Browsers 513
-Session 252
[Session_Abort] 252
[Session_AddVariable] 252
[Session_DeleteExpired] 252
[Session_End] 252
[Session_ID] 252
[Session_RemoveVariable] 252
[Session_Result] 252
Sessions 251, 279

Adding variables 254
Deleting 255
Example 255
Removing variables 255
Starting a session 253
Tags 252
Using cookies 254
Using links 254

[Session_Start] 251, 252
Parameters 253

[Set] 412
Set 411

Member Tags 412
SET MySQL Data Type 163
Sets 387
SGML 466
-Show 240

8 4 9

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x C – i n d e x

Listing fields 106
Listing required fields 107
Requirements 105
Showing database schema 104

[Shown_Count]
Displaying the current shown count 102

Simple Object Access Protocol 639
[Site_AtBegin] 568
[Site_ID] 568
[Site_Name] 568
[Site_Restart] 568
-SkipRecords 110, 123
[SkipRecords_Value] 99
[Sleep] 700
[Sleep] 560
Smart HTML Encoding 247
SMTP 602
[Sort_Arguments] 99
[Sort_Arguments] … [/Sort_Arguments]

Displaying sort arguments 101
-SortField 123

Sorting FileMaker Pro results 177
[Sort_FieldItem] 99
Sorting

Arrays 398
Sorting Links 129

Inline Lasso 137
Sorting Records

FileMaker Pro 177
-SortOrder 123
[Sort_OrderItem] 99
-SortRandom 123, 160
Specifying Paths 46
-SQL 109
SQL

Encoding 248
SQL injection 109, 111
SQL Server

XML templates 481
SQL Statements 109
Square Brackets

Converting to LassoScript 57
SSL 615
[Stack] 414
Stack 414

Member Tags 414
Stacks 387
Standard Generalized Markup Language 466
Startup Actions 43
Startup.LassoApp 674
Statement Only Inline 91
Storage Array 389
Storage Types 39
[String] 332
[String] 213
[String_FindRegExp]

Examples 357
[String_ReplaceRegExp]

Examples 356
Strings 72, 331

Assignment 333
Automatic casting 332
Casting values to string 332
Comparisons 335
Concatenation 334
Converting case 338

Converting to an array 344
Deleting a substring 334
Expressions 77
Extracting part of a string 340
Finding regular expressions 357
Joining an array 394
Lenth 340
Manipulation tags 337
Repeating a string 334
Replacing regular expressions 356
Splitting a string into an array 390
Symbols 78, 333

[String->Split]
Creating an array 390

Style Sheets 475
Submitting Form Data to Lasso-Enabled Databases

501
Substitution Tags 62

Defining 687
Encoding 246
Module code 767
Module walk-through 768
Operation 766
Tutorial 767

Sub-Tags 76
Symbols 75, 217

Assignment 218
Boolean 244
Math 365
Overloading 715, 718, 720
Strings 333
symbol 229, 693

Synonym 69
Syntax 61
Syntax Coloring 586
Syntax Errors 257
System.ListMethods 635
System.MethodHelp 635
System.MethodSignature 635
System.MultiCall 635

T
-Table 279
Table Batch Change 279
[Table_Name] 99
[Table_RealName] 105
[Table_RealName] 110
Tables

Listing available tables 106
Listing fields 106
Required fields 107

[Tag->asAsync] 580
[Tag->asType] 580
Tag Data Type 579

Member tags 580
Running a tag 580

[Tag->Description] 580
[Tag->Eval] 580

Evaluating compound expressions 59, 582
[Tag->Invoke] 580
[Tag->Run] 580

Parameters 580
Running compound expressions 59, 582

[Tags]
Finding tags 579

Tags

8 5 0

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x C – i n d e x

Categories and naming 67
Naming conventions 68
Synonynms and abbreviations 69

[Tags] 563
Tag Types 62
[TCP_Open] 457
[TCP_Send] 461
Templates

XML 481
Test.Echo 635
Text Format Files 39
Text Formats 44
Third-Party Namespaces 538
[Thread_Abort] 572
[Thread_Atomic] 228, 571
[Thread_Event] 577

Member Tags 577
[Thread_Event->Signal] 577
[Thread_Event->SignalAll] 577
[Thread_Event->Wait] 577
[Thread_Exists] 572
[Thread_GetCurrentID] 572
[Thread_GetPriority] 572
[Thread_Info] 572
[Thread_List] 572
[Thread_Lock] 574

Member tags 574
[Thread_Lock->Lock] 574
[Thread_Lock->Unlock] 574
[Thread_Pipe] 577

Member Tags 577
[Thread_Pipe->Get] 578
[Thread_Pipe->Set] 577
[Thread_RWLock] 574

Member tags 576
[Thread_RWLock->ReadLock] 576
[Thread_RWLock->ReadUnlock] 576
[Thread_RWLock->WriteLock] 576
[Thread_RWLock->WriteUnlock] 576
[Thread_Semaphore] 574
[Thread_Semaphore->Decrement] 575
[Thread_Semaphore->Increment] 575
[Thread_SetPriority] 572
[Thread_Semaphore]

Member tags 575
Thread Tools

Communications 576
Controlling access to a resource 574, 575, 576
Events 577
Lock 574
Pipes 577
Processing messages 578
Read/write lock 576
Semaphore 575
Waiting for a signal 577

Time 374
Time Zone 374
Tokens 96
[Token_Value] 99
Transient 706
Transient Member Tags 710
Transient Variable 708
Tree Map 417

Member Tags 417
[TreeMap] 417
Tree Maps 387

Trigonometry 372
True 243

U
UCS Transformation Format 31
Unicode 30, 40, 116, 142, 629
-Unique

Returning unique field values 126
Unique ID 588
Universal Character Set 31
Unknown Tag Callback 714
-Update 141

Requirements 146
Updating Records 146

Classic Lasso 142
Security 142
Updating several records 149
Using an HTML form 147
Using a URL 148
Using inline tags 147

Upgrading
Email command tags 591

Uploading Files 620
Upper Case

Strings 338
URLs 28, 219

Action.Lasso 96
Actions 41
Adding a record 145
Encoding 247
Executing a FileMaker Pro script 190
Format files 95
Link Tags 131
Parameters 34, 220
Response tags 95
Syntax 58
Updating a record 148

-UseLimit 123, 160
Use MySQL 4.1 Character Sets 279
-Username 117
Using Fonts 492
UTF-8 29, 30, 40, 116, 142, 279, 629

V
Validation Tags 587
[Valid_CreditCard] 588
[Valid_Email] 588
[Valid_URL] 588
[Value_List] … [/Value_List] 163, 184
[Value_ListItem] 163, 184

Displaying selected values 186
Value Lists 163, 184

Creating a pop-up menu 185
Creating radio buttons 186
Displaying all values 185
Displaying selected values 186

[Var] 223
[Var_Defined] 223
[Variable] 223
[Variable_Defined] 223
Variables 208, 223

Accessing in asynchronous tags 699
Checking 225
Creating 208, 224
Local 693

8 5 1

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x C – i n d e x

Page 693
Returning data types 214
Returning the type of a variable 562
Returning values 209, 224
Server-side 251
Setting 209, 225

[Variables] 563
[Var_Remove] 223

W
WAP 652

Tags 655
[WAP_IsEnabled]

Checking to see if current browser is WAP enabled
655

Web Application Servers 36
Web Browsers 28

Authentication 32
Cookies 31

Web Companion 168
Web Servers 33

Connectors 45
Errors 257

Web Serving Folder
Serving LassoApps 675

[While] 242, 243
Wireless Application Protocol 652
Wireless Devices 652
Wireless Markup Language 466, 652
WML 466, 652

Encoding 654
Example 655
Formatting 652, 653
Forms 654
Links 653
Output formats 44
Serving 653

X
XML 465, 466

Attributes 469
Children 469, 472, 474
Contents 469
Customizing templates 483
Data type 466
Descendants 474
Document type definition 465
Encoding 247, 480
Extracting tags using an XPath 472
Extracting tags using XPath 473
Format files 39
Formatting 480
Member tags 467, 476, 477, 478
Output formats 44
Parameters 472, 474
Root tag 472
Schema 465
Serving 479
Templates 481
Transformations 475
Wireless Markup Language 652
XPath 465, 469

[XML_Extract] 470
XML-RPC 465, 466, 696

Built-in data types 636

Built-in methods 635
Calling a remote procedure 634
Calling multiple methods 635
Calling remote procedured (low-level) 636
Custom Tags 637, 649
Data Type 636
Listing available methods 635
Naming conventions 684
Processing incoming requests 637, 649
Processing tags 638

[XML_RPCCall] 634
[XML_Serve] 479

Serving WML 653
[XML_Transform] 475
XPath 465, 466, 469

Conditional expressions 473
Extracting XML Tags 472, 473
Simple expressions 471

XSL 466
Transforming XML data 475

XSLT 466, 475
XSL Transformations 466

8 5 2

L a s s o 8 . 5 L a n g u a g e g u i d e

a p p e n d i x C – i n d e x

